AUTHOR \quad Rouse, William B., Ed. tITLE Applications of Operations Research Techniques in

INSTITUTION
PUB DATE
NOTE
EDRS PRICE
DESCRIPTORS

IDENTIFIERS Tufts University Libraries. Tufts Univ., Medford, Mass. Coll. of Engineering. Dec 73 68 p .

MF-\$0.65 HC-\$3.29
Boof Thefts; Library Acquisition; Library Circulation; Library Reference Services; *Library Research; *Library Services; *0perations Research; Periodicals; Reference Materials; Staff Uiilization; Statistical inalysis; Tables (Data); *University Libraries; *Use Studies Tufts University
abstract
This collection of papers is based on projects done in conjunction with a senior level/graduete course, "Applications of Operations Research Techniques in Systems Engineering." These seven papers describe research studies which utilized user surveys and/or statistical methods to analyze various library operations. The papers are entitled: 1) "User Opinion of Reference Resources and Services"; 2) "Staffing the Circulation Desk"; 3) "Staffing the Reserve Book Room"; 4) "Book Selection"; 5) "Utility of Engineering Science Periodicals"; 6) "Optimal Tracing Procedures"; and 7) "Automated Protection of Library Collection." (SL) λ

APPLICATIONS OF OPERATIONS RESEARCH TECHNIQUES

 I NTUFTS UNIVERSITY LIBRARIES

Edited By

William B. Rouse
Department of Engineering Design

December 1973
U.S. DEPARTMENT OF HEALTM,

EDUCATION A WELFARE
NATIONAL INSTITUTE O EDUCATION
THIS DOCUMENT HAS BEEN REPR
DUCED EXACTLY AS RECEIVED FR OUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

FOREWORD

This collection of papers is based on projects done in conjunction with a senior level/graduate course, Applications of Operations Research Techniques in Systems Engineering. During the past semester, this course concentrated on analysis of library operations with twenty-five percent of the class hours devoted to lectures and seminars on that topic. The remaining seventy-five percent of the class hours were devoted to lectures on probability and statistics, queuing theory, linear and dynamic programming, and decision analysis.

The text used was Hillier and Lieberman, Introduction to Operations Research, Holden-Day, 1967. However, Morse, Library Effectiveness, MIT Press, 1968 as well as several other books and journals were used extensively.

Ten students were officially enrolled in the course, but several other individuals, to varying degrees, took part in the library-oriented aspects of the course. Of the total number of people involved with the course there were several proiessional librarians and social scientists as well as the expected large number of mathematicians and engineers.

The professional staff of the University Libraries were invited to bi-weekly seminars and several were regular guests and offered valuable comments and suggestions. Each project was associated with some particular aspect of the library system and those involved with the project worked with the member of the library staff who had responsibility in the appropriate area.

Because of various time constraints, two projects are not included in this collection. David L. Aach investigated the effects of library temperature on student study ing habits and found that temperature variations from approximately $71^{\circ} \mathrm{F}$ appear to have a negative effect on studying. Talal Findakly considered the need for multiple copies of highly circulated books in the Engineering Library and suggested a decision criterion for ordering multiple copies.

As a last and most important comment, I want to express my gratitude to the University Librarian, Joseph S. Komidar, whose participation in the seminars and enthusiastic support of the projects were key factors in their success. Also, the regular participation in the course of Frederick S. Jones, Head of Acquisitions, and George Beal, Head of Circulation, contributed significantly to the rapport with the Libraries.

CAPLE OF CONTENTS

User Opinion of Reference Resources and Services 1
Staffing the Circulation Desk 11
Staffing the Reserve Look Hoom 24
Book Selection 30
Utility of Engineering Science Periodicals 37
Optimal Tracing Procedures 45
Automated Protection of Library Collections 52

user opinion of reference fesources and services

Douglas P. Rayner
Engineering Design 150, Operations Research
Tufts University

Abstract

With the intention of providing the administrators of the Tufts University Libraries with information on user attitudes concerning reference materials and services, this project entailed designing a survey questionnaire, distributing the survey to the user population, and using the University computer to ald analysis of the user response. Finally, conclusions and suggestions derived from the statistical analyses are presented.

INTRODUCTION

When someone is responsible for providing a service and desires some guage of user opinion, the first tool that comes to mind is of ten a user survey. But of ten if the user population is large the administrator is apt to become discouraged by the appearent clerical work involved. This is unfortunate since an incorrect assessment of the work involved might completely discourage use of this powerful tool. It really does not take that long to design a short, concise, multiple choice questionnaire that will enable assessment of user opinion as well as a longer questionnaire, and will undoubtedly be better received by the user population. The newer conying processes are less cost prohibitive than before enabling fast, economical production of the questionnaire. And finally, the use of a statistical package on a medium to large size computer reduces complex statistical analysis to simply transfering the responses to some machine readable form, and creating a simple set of program control commands. An example of a service operation that can benefit from correct information about user opinions is a university or large city library. Since most libraries have rather large user populations, the tools described above lend themselves well to simplifying the task of surveying these large populations. With these facts in mind, this project was indtiated.

The project entailed designing a questionnaire with the help of the library staff to determine general user attitude concerning the reference materials and services provided by the Tufts University Library. A two page, 13 question (multiple choice) survey was prepared, and 450 copies were made. Despite predictions by library staff and members of the class that the user response might be minimal, all copies of the survey were taken from a display at the front door by entering students, and 320 were returned to the boxes provided at the front entrance, all in the period of about 12 hours. The responses were then typed into the university DEC System 10 Timesharing System and one-way and two-way frequency statistics were obtained using the Statistical Package for the Social Sciences (SPSS).

The remainder of this paper describes the questionnaire, and discusses the one-way and relevant twoway frequency statistics obtained. The final nages contained conclusions and suggestions based on these statistics.

THE QUESTIONNAIRE

The final questionnaire (shown on next page) contained 13 questions, and space for comment and criticism. It was printed on one page (two sides) so that the users would not be discouraged by what might have appeared to be a long questionnaire. The first few questions were aimed at classifying the particular user so that some relationships might later be seen between user cinaracteristics and the answers to the more subjective questions. Questions seven and eight, although seemingly identical, were each trying to substantiate and quantify a suspicion that the average user was not sure of what reference materials or reference services were provided by the library. Question nine was included to see if the average user also suspected that his fellow users were unaware of what reference resources were available. In question ten it was assumed that a significant number of users would not besure of reference resources, and it therefore tried to determine what the probable result would be if the user were made more aware of the present reference resources. This same assumption carried into question eleven where the user user was asked to recommend methods of publicizing the present reference resources. Question twelve was intended to guage the user attitude toward the present dispersed reference materials amongst the various branches of the library as opposed to their attitude toward a consolidated reference center. Question thirteen asked the user to generalize his opinion of the reference materials and services available in the library. Question fourteen was included to allow the user to add any comments he/s's felt pertained to the reference resources of the Tufts Library.

ANALYSIS

A table of the frequency of answers to each question is shown on the following page. Results shown as histograms are shown for the more interesting questions. Some of the more frequent comments entered on question fourteen are given below.

1) Desire for acquisition of more new books
2) Concern for the overcrowded conditions due to a lack of a student center which burdens the library with many 'socializers'
3) Concern for the facr that the most needed bound periodicals are of ten not in the stacks, but rather are checked out.
4) Desire for consolidated stacks to give nore study space
5) Desire to have the library open more hours
6) A need for storing more resources on film
7) Desire for a more uniform temperature throughout the building
8) A need for more professional staff on duty evenings to answer questions
9) A better copying machine to produce higher quality copies

Some of the relationships between pairs of questions (crosstabulations) are shown on the next few pages. Cutlined below are some of the relevant relationships observed.

1) General opinion of the reference resources related to class and major.
a) The class and major which most frequently found the reference resources 'poor' were the funior class soctal science majors
b) The freshman, sophomore and senior classes cach had pre-

This survey is conducted by students in Engineering Design 150, 'Operations Research', with the knowledge and cooperation of the Library Administration.

By conducting this survey, the students hope to obtain information on user attitudes and provide library officials with alternatives for possible changes in library structures and policies in the near future, and for long range planning.

This survey is concerned with reference resources. This includes both reference materials (Encyclopedias, Abstracts, Indexes to Periodical Literature, Dictionaries, etc.) and reference services (meaning any service provided by the reference librarian or by a member of the reference staff).

Please take a few minutes to fill out the survey, and return it to the box provided near where you received the survey. If you take a copy of the survey, but decide not to fill it out, please'pass it on. Your cooperation is greatly appreciated.

1. What time of day is it as you are filing out this survey?
2. Morning 2. Afternoon 3. Evening
3. What is your class?
4. Fresh. 2. Soph. 3. Jr. 4. Sr. 5. Grad. 6. Faculty or Staff
5. Non-Tufts Student
6. What is your Major Discipline?
7. Humanities 2. Social Science 3. Natural Science 4. Engineering
8. Special Studies 6. Does not apply
9. How would you classify your use of the Tufts Library System?
10. Almost never 2. Rarely 3. Occasionally 4. Frequently 5. Almost nightly
11. In an average semester, how many times would you use a piece of reference material or request service from the reference staff?
$\begin{array}{llllll}\text { 1. Never } & \text { 2. } 1-5 & \text { 3. } 6-10 & \text { 4. } 11-20 & \text { 5. } 21-30 & \text { 6. More than } 30\end{array}$
12. How is your use of the reference resources of the library distributed through the semester?
13. Does not apply 2. Well distributed throughout the semester
14. Mostly early in the semester 4. Mostly during the end of semester and exams
15. Mostly the end of semester, but not during exams 6. Mostly during exam period
16. Do you thinik you are aware of what reference materials are provided by the library?

> 1. yes 2. no
8. Do you think you are aware of what reference services are provided by the library?

1. yes 2. no
(Continued on back of this page)
2. Do you think the majority of the library users are aware of what reference resources are provided?
3. yes 2. no 3. not sure
4. If you are unsure of what reference resources are provided, do you think being made aware of them would influence your use of these reference resources?
5. does not apply 2. considerably 3. somewhat 4. not at all
6. If you think that you yourself and/or the average user are unaware of the reference resources provided, what do you think the library should do to remedy the situation?
7. Regular informative seminars 2. publish a "How to use the T.U. Library" documenf
8. both 1 and 2 4. other (please specify)
9. Do you think all reference materials and services of the Medford campus libraries should be consolidated in Wessell?
10. yes 2. no 3. not sure
11. What is your general opinion of the reference resources provided by the T.U. Library?
12. can't say 2. more than adequate 3. adequate 4. needs improving
13. generally poor
14. Please add any criticism or recomendations you wish concerning the reference resources of the Tufts University Library.

TABLE 1: FREQUENCY OF ANSWERS TO EACH QUESTION

dominantly 'needs improving' attitudes
c) The humanities majors were more frequently of the 'more than adequate' opinion
2) Class and major related to frequency of library use
a) The class with the most frequent 'almost never' response was the freshman class
b) The class with the most frequent 'almost nightly' response was the senior class
c) Natural science majors tend to use the library frequently but are not as frequent users of reference resources
d) Engineering students use the library mostly for reference purposes
3) Major related to personal awareness of reference materials and services
a) Humanities, social science, and natural science majors seemed to be more aware of reference materials than engieering majors or nonTufts students
4) Personal awareness of reference materials related to general opinion of the reference resources
a) Both the users who felt they were aware of the reference materials available and those who felt they were unaware of these materials had the same distribution of orinions on resources in seneral
varjable

vanilable varzza personal awareness of services
clot 1 .

variable vaszz9 general usen ahareness of resources
code
TABLE 2: histograms of the result of questions $7,8,9$

table 3: histogram of the results of questions 10,13

VARDID
TABLE 4: SOME 0? THE MORE INTEREETING CROSSTABULATIONS
5) General personal avareness of reference resources related to assumed resuits of more publicity of reference resources
a) 85% of those aware of resources and 95% of those who were unaware of reference resources believed their use of resources would increase at least sonewhat
6) User desire for consolidation related to resource use, and use distribution throughout the semester
a) People who never use the resources and people who make frequent use of the resources responded more often 'no' to a need for consolidation
b) People who use the library at particular times during the semester were more interested in consolidation than the people who use the the library on a regular basis
7) Frequency of library use related to general opinion of reference resources
a) The more people used the library the larger the proportion of 'adequate' opinions
8) Frequency of library use related to assumed results of more publicity of the reference resources
a) Those who used the library very infrequently thought their usage would not increase if resources were more publicized
b) The more frequent the use, the larger the percentage who believed their use would increase at least somewhat if resources were more publicized

CONCLUSIONS
Since the following trends were observed in the analysis of the results of the survey:

- Almost 50% of respondents were unaware of reference materials available
- More than 75\% of respondents were unaware of the reference services available
- Over 80% of all users whether aware of resources or not felt their use of reference resources would increase at least somewhat
- The users were interested in seminars and a summary document to help publicize the present resources available
- The most frequently added comment concerned the overcrowded conditions of the library, and the suspicion that this was due to a lack of a student center
- The second most frequent comment concerned the seemingly constant unavailability of important bound periodicals
and since there are probably no new, readily available funds to do do more than continue the present acquisition policy in the reference department, the following suggestions are presented:
- The library staff should try to compile a brief summary document listing the most frequently used reference materials available in the library including information on where to find the complete list of reference materials, and information on the services provided by the referstaff
- The library staff should suggest that the University accelerate plans to set up a student center, and give full support to any such plan
- The library staff should seriously consider placing a copying machine in the periodical area so that students can easily copy desired information, and then change policy to state that bound periodicals may not be taken from the library
- The library staff should, on a periodical basis, try to survey user opinion concerning all aspects of library operation, to help provide the best service possible

ACKNOWLEDGEMENTS

The author is grateful to Ms. Jean F. Butt, head of reference and special collections services, Tufts University Library, and her staff for helping to design the questionnaire. The author is also grateful to Mr. George Beal, head of circulation and building services, Tufts University Library for his help in the logistical planning of the survey distribution.

RFPERENCES

Nie, N., Bent, D., Hull, C. Statistical Package for the Social Sciences, McGraw-Hill Company, 1970.

STAFFING THE CIRCULATION DESK

Ramesh G. Nar, Graduate Student of Engineering Design, Tufts University, Medford, Massachusetts 02155

Abstract

This paper presents a technique for staffing the circulation desk. The technique used is the application of queueing theory. The technique presented here can be used for staffing other desks having similar characteristics. The staffing done in this problem is for existing system. Data required for staffing the circulation desk was collected at the circulation desk of Wessell Library. The data is analyzed and finally the number of servers required on the circulation desk is obtained.

IWFRODUCTION

The functions of the circulation desk is to issue the books and also to answer inquiries either by telephone or in person. There is one circulation desk in Wessell Library. Also, there is a telephone at the circulation desk.

Generally, the number of servers required depends upon the arrival rate of inquiries and service rate of servers. As the arrival rate increases, servers become busier and at some point it will be necessary to increase the number of servers. The service rate depends upon the task to be performed and also upon the efficiency of servers.

To get the average arrival rate and average service rate an appropriate model is assumed. Application of queueing theory will lead to the proposed staffing policy.

DATA COLLECTION

After conversation with the librarian, it was found that particular hours of the day are of interest. Data was obtained for line length at an interval oi fifteen minutes during the hours of interest. This data was collected during the period of October 25, 1973 to November 6, 1973. Line length was caken such that most of the library hours are covered. This data is given in Table 1. Line length means the number of persons waiting in front of the circulation desk (including the persons being serviced).

TABLE 1. LINE LENGTH DATA

The average service rate was determined by collecting data between October 31, 1973 and November 2, 1973. This data is tabulated in Table 2.

SERVICE TIME Min.	FREQUERNCY (No. of Services)	SERVICE TIME Min	FREQUENCY (No. of Services)
$0-0.5$	31	$5.0-5.5$	2
$0.5-1.0$	40	$5.5-6.0$	0
$1.0-1.5$	38	$6.0-6.5$	0
$1.5-2.0$	7	$7.0-7.5$	0
$2.0-2.5$	4	$7.5-8.0$	0
$2.5-3.0$	4	$8.0-8.5$	0
$3.0-3.5$	1	$8.5-9.0$	0
$3.5-4.0$	1	$9.0-9.5$	1
$4.0-4.5$	0	$9.5-10.0$	1
$4.5-5.0$			

TABLE 2. SERVICE TIME PERIOD AND NO. OF SERUTTCES (in person)

Data for inquiries by telephone was collected during the period October 31, 1973 to November 29, 1973. This data is tabulated in Table 3.

Date	Time Period	Time for each Inquiry in Sec.				Total Inquiries
10-31-73	17-18	$38 \quad 113$	83	216		4
	18-19	17349				2
	19-20	83191				2
11-1-73	12-13	31793	44		-	3
	13-14	1574	209	132	321	5
	14-15	21193				2
11-2-73	8-9	33		-		2
	9-10	0				0
	10-11	119214				2
11-4-73	18-19	10337	49	312	17	5
	19-20	4354	271	162	109	4
11-5-73	15-16	17922	143			3
	16-17	93				1
	17-18	11436				2
11-6-73	13-14	311				1
	14-15	203				1
11-28-73	8-9	64				1
	9-10	$34 \quad 12.7$	93	193		4
	15-16	205113				2
	16-17	314273	33	78	97	5
11-29-73	10-11	$243 \quad 287$	257	131	163	5

TABLE 3. TELEPHONE INQUIRIES

ANALYSIS

Mean line length, L, for each time period is obtained simply by summing up the line lengths and dividing by the total number of measurements during that period. This mean line length suggests that on the average, there will be that many people in the line at the desk. These values are tabulated in Table 4.

TABLE 4. CALCULATIONS OF L

From Table 2, the histogram of the service itime (in person) was drawn and is shown in Figure 1. It shows that frequency is highest when the service time is 0.5 to 1 minute.

The cumulative service time distribution was obtained. The probability that service time is greater than time t is shown in Table 5 and graph of the service time distribution is shown in Figure 2.

Figur:e 1. Histogram of Service Time (in person)

Figure 2. Cumulative Service Time Distribution (in person)

Service Time	Inquiries (Service Time > t)	$\begin{gathered} \text { Probability } \\ \text { (Service Time }>t) \end{gathered}$
0	132	1
0.5	101	0.765
1.0	61	0.462
5.5	23	0.377
2.0	16	0.121
2.5	12	0.091
3.0	8	0.0606
3.5	6	0.0455
4.0	5	0.0303
4.5	4	0.0303
5.0	4	0.0303
5.5	2	0.015
6.0	2	0.015
6.5	2	0.015
7.0	2	0.015
7.5	2	0.015
8.0	2	0.015
8.5	2	0.015
9.0	2	0.015
9.5	1	0.008
10.0	0	0.0

TABLE 5. CUMULATIVE SERVICE TIME DISTRIBUTION (In person)

As seen from the graph, service time appears to be exponentially distributed. Therefore, the area under the curve will be the average (in person) service time $1 / \mu_{1}$ (Ref. 1).
[1] Calculating the area,

$$
\mu_{1}=\frac{1}{1.323}=0.755 \quad \text { services/minute. }
$$

While collecting the data for line length, there were always two servers at the desk. From reference [1], for a two server model having Poisson input and exponential service time, it can be shown that

$$
\begin{equation*}
\rho=-\frac{1}{L}+\sqrt{\frac{1}{L^{2}}+1} \tag{2}
\end{equation*}
$$

where ρ is the utilization defined as the fraction of time each server is busy. For each time period utilization factor is obtained.
[3]

$$
\rho=\frac{\lambda_{1}}{s \mu_{1}}
$$

Using this formula mean arrival rate (in person), λ_{1} is obtained. The values of utilization and mean arrival rate are shown in Table 6.

Time Period	Mean Line Length L	Utilization Factor ρ	Mean Arrival Rate $\lambda_{1}=\delta \rho \mu_{1}$
$8-9$	0.75	0.335	0.490
$9-10$	1.0	0.414	0.625
$10-11$	1.8	0.585	0.874
$11-12$	1.8	0.585	0.874
$12-13$	2.6	0.689	1.039
$13-14$	1.6	0.554	0.836
$14-15$	1.73	0.574	0.866
$15-16$	1.6	0.554	0.836
$16-17$	1.8	0.585	0.874
$17-18$	1.13	0.450	0.681
$18-19$	1.5	0.535	0.808
$19-2 C$	0.9	0.385	0.581
$20-21$	1.0	0.414	0.625
$21-22$	0.8	0.350	0.528

table 6. utilization and mean arrival rate λ_{1} (in person)

Values of the mean arrival rate (in-person) furing each time period is obtained and mean service rate is also obtained. This is only for inperson inquiries. Now inquiries by telephone will be considered. It is found while discussing with librarian that inquiries by telephone are much less frequent than inquiries in person at the circulation dest. Therefore, mean arrival rate λ_{2} (phone) for each time period was found by taking average inquiries per minute during that time period. Mean arrival rate is tabulated in Table 7.

Time Period	Mean Arrival Rate λ_{2}
$8-9$	0.017
$9-10$	0.034
$10-11$	0.058
$11-12$	0.050
$12-13$	0.050
$13-14$	0.050
$14-15$	0.025
$15-16$	0.042
$16-17$	0.050
$17-18$	0.050
$18-19$	0.058
$19-20$	0.058
$20-21$	0.034
$21-22$	0.034
	\cdot

table 7. mean arrival rate λ_{2} (by phone)

From Table 3 number of services that had service times greater than t were obtained. The probability for service time greater than t was then determined. This probability is tabulated in Table 8.

Service Time	No. of Services Service Time $>t$	P (Service time $>t$
0	55	1
0.5	50	0.91
1.0	42	0.76
1.5	36	0.65
2.0	25	0.45
2.5	21	0.38
3.0	17	0.31
3.5	12	0.22
4.0	8	0.15
4.5	7	0.13
5.0	5	0.09

TABLE 8. CUMULATIVE SERVICE TIME DISTRIBUTION (by phone)

The service time distribution is shown in Figure 3. It is approximately exponentially distributed so the area under the curve is equal to $1 / \mu_{2}$ i.e. . mean service time. Thus,

$$
\mu_{2}=0.444 \text { customers } / m i n
$$

Mean arrival rate in person λ_{1} and mean arrival rate by telephone λ_{2} for each time period is known and also the mean service rate in person and by telephone μ_{1} and μ_{2} respectively are now known. Therefore, total arrival rate and mean service rate for each time period are obtained using the following relationships.

$$
\begin{align*}
\lambda & =\lambda_{1}+\lambda_{2} \tag{5}\\
\mu & =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \mu_{2}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \mu_{2}
\end{align*}
$$

Values of λ and μ obtained for each time period are tabulated in Table 9.

Figure 3. Cumulative Service Time Distribution (by telephone)

Figure 4. Total Arrival Rate v/s Library Hours

Time Period	Mean Line Length L	Mean Arrival Rate λ_{1}	Mean Arrival Rate λ_{2}	Total Arrival Rate λ	Average Service Rate μ
$8-9$	0.75	0.490	0.017	0.507	0.745
$9-10$	1.0	0.625	0.034	0.659	0.740
$10-11$	1.8	0.874	0.058	0.932	0.734
$11-12$	1.8	0.874	0.050	0.924	0.730
$12-13$	2.6	1.039	0.050	1.089	0.739
$13-14$	1.6	0.836	0.050	0.886	0.737
$14-15$	1.73	0.866	0.025	0.891	0.747
$15-16$	1.6	0.836	0.042	0.878	0.741
$16-17$	1.8	0.874	0.050	0.926	0.738
$17-18$	1.13	0.681	0.050	0.731	0.735
$18-19$	1.5	0.808	0.058	0.866	0.735
$19-20$	0.9	0.581	0.058	0.639	0.726
$20-21$	1.0	0.625	0.034	0.659	0.739
$21-22$	0.8	0.528	0.034	0.562	0.738

table 9. CALCULATIONS OF λ and μ

Total arrival rate versus time is plotted in Figure 4. From the graph it is seen that the peak occurs during periods 12 to 13 , i.e. the servers are more busy during this period.

Utilization factor ρ for each time period for different numbers of servers was obtained using the formula

$$
p=\frac{\lambda}{s \mu} .
$$

This is given in Table 10.

Time Period	Utilization factor $=\rho$ when $\mathbf{8 = 1} \quad \mathrm{s}=2 \quad \mathrm{~s}=3$		
8-9	0.680	0.340	0.227
9- 10	0.890	0.445	0.297
10-11	1.270	0.635	0.423
11-12	1.260	0.630	0.420
12-13	1.460	0.730	0.487
13-14	1:201	0.600	0.400
14-15	1.195	0.598	0.398
15-16	1.485	0.593	0.395
16-17	1.251	0.626	0.417
17-18	0.995	0.498	0.332
18-19	1.180	0.590	0.360
19-20	0.879	0.439	0.293
20-21	0.891	0.446	0. 297
21-22	0.761	0.380	0.254

TABLE 10. UTILIZATION FACTOR

From Ref. (2), it is suggested that $\rho<0.667$ will yield library service that will not cause excessive delays. From Table 10 it is seen that for single server $\rho>0.667$ for all time periods therefore it will always cause excessive delays. Also, during some of the time periods $\rho>1$ it implies that in case of single server the given length will go on increasing. In case of two servers $\rho<0.667$ except during 12 to 13. Therefore, it is suggested that two servers are sufficient except the period 12 to 13 . For period 12 to 13 if there are three servers ρ will decrease to 0.487 .

CONCLUSIONS
From the above analysis three servers are necessary during the period 12 to 13 and two servers are necessary during the rest of the library hours. With this policy, the average ager waiting time is 1.378 minutes.

It should be noted that data collected for line length was at an interval of fifteen minutes. If this interval is reduced, more accurate mean line lengths could be determined and thus, more accurate ρ. Besides the number of servers required, this analysis also tells us about the total waiting time for each nerson (including service time).

ACRNOWLEDGEMENTS
The author is grateful to William B. Rouse, Assistant Professor of Engineering Design, for his guidance in understanding the different situations. The author is also indebted to Mrs. Myra Siegenthaler, Head of Circulation Desk, Wessell Library, Tufts University, for her cooperation and suggestions throughout the course of this study.

REFERENCES

1. Fredzick S. Hillier and Gerald J. Liberman. Introduction to Operations Research, Holden-Day. San Francisco, 1967.
2. Philip M. Morse. Library Effectiveness, M.I.T. Press, Cambridge, Mass. 1968.
3. William B. Rouse and Sandra H. Rouse. "Use of a Librarian/Consultant Team to Study Library Operations", College and Research Libraries, Vol. 34, No. 5, Sept. 1973, pp 242-248.

STAFFING THE RESERVE BOOK ROOM

William B. Rouse and Sandra H. Rouse

Abstract

An approach to staffing the Reserve Book Room at Tufts' Wessell Library is discussed. Characteristics of user demand and staff service are presented. Queuing models and dynamic programming are used to determine the allocation of staff man-hours that minimizes average user waiting time.

INTRODUCTION

This paper discusses a study of the Reserve Book Room at Tufts' Wessell Library. Initially, the authors had hoped to evaluate the use of the reserve collection. This would have included usage of materials as a function of discipline, level of the course for which the material was reserved, etc. However, in developing data col = lection methods; it becarne evident that the student staff who check-out materials were much too busy to record the necessary data. Thus, it was realized that staffing of the Reserve Book Room would have to be dealt with first.

Weekday operation of the Reserve Book Room betwean 8:30 AM and 9:30 PM was considered. When this study began, twenty-six student man-hours per day were allocated to this period. Observation easily led one to believe tinis was often inadequate. Before data collection had begun, the allocation was increased to thirty manhours. The results of this study show that this increase was justified.

THE RESERVE BOOK ROOM

The Wessell Library Reserve Book Room collection is shelved on closed and open stacks. A professor may request that certain items be placed on closed reserve because he expects this material to be used more frequently by the students in his course. Limiting the loan period increases the probability of success that each student will experience in requesting the item.

Wessell Library policy is that generally all closed reserve items must be used in the Library and can only be signed out after 9:00 PM, and returned by 9:30 AM, the following morning. The open reserve loan period is determined by the professor and is usually specified as one to seven days. These books may be consulted without as sistance from the reserve desk staff.

The total collection size is approximately 15,000 items with an average circula. tion rate of 400 a day. The room is staffed by a full-time supervisor and assistant, a part-time typist, and approximately twenty-seven part-time students whose main responsibility is to circulate and reshelve the reserve collection.

The operation of main concern is how quickly the reserve circulation staff satisfies a user's request. Routinely, this involves a user requesting e. particular item on closed reserve. The circulation attendant locates the item, stamps the check-out
card with the student identification card and files the record at the desk. Or, for example, a user might request to reserve an item for overnight use. The attendant, after some preliminary checking for the status of the item, gives the user an overnight card to fill out which alerts interim users to return the item to the desk by 9:00 PM.

The supervisor is consulted when difficulty arises in fulfilling the requests. Because she usually works near the circulation desk, the supervisor also serves users when the line of users increases to the point that it significantly exceeds the number of attendants. Generally, the assistant works less frequently near the desk and thus, less frequently intervenes in serving users.

In summary, this paper focuses on the following three elements of the reserve circulation operation:

1. Number of servers behind the desk, i.e., students and supervisors;
2. Number of users waiting in line for service and being served;
3. The amount of time i_{\imath} takes to satisfy a user.

DATA COLLECTION

The situation as described in the previous section easily leads to the use of waiting line or queuing models. This requires measurement of the average arrival rate of users, λ, and the average service rate, μ.

Direct measurement of λ would require recording the exact arrival time of each user. This would be very time consuming. Thus, another sampling approach was adopted. The number of people in line (including those being serviced) was recorded every fifteen minutes for two hour periods. The collection periods were fairly uniformly distributed over the day between $8: 30 \mathrm{AM}$ and $9: 30 \mathrm{PM}$. The intervals were chosen to correspond with class times at Tufts as this is the way in which studerthelp must be scheduled. Between October 12 th and November 15 th, data was collected for fifteen periods totaling 151 measurements. Along with the line length measurement, the number of servers, s, were recorded in two categories. The catpgories were scheduled student servers and supervisory servers.

The service time includes only the time it takes to satisfy a user's request and not the time he may have spent waiting to make his request. The distribution of service times was determined luy clocking 157 services between November 9 th and 19 th. The numbers of servers were recorded in the same two categories.

ANALYSIS

Testing the hypothesis that service rate was affected by the number of people waiting in line, the correlation coefficient of service time and line length was calculated and found to be -0.05 . This appears to reject the hypothesis and thus, service rate was assumed to be independent of line length.

Assuming exponentially distributed service times, the average service rate is the reciprocal of the area under the cumulative probability distribution function

P(service time $>\mathrm{T}$). This function is ploted in Figure 1. From this data, it was found that $\mu=0.921$ customers per minute.

The queuing models discussed by Hillier and Lieberman [1] relate λ and μ to the average line length, L. Line length is defined as the total number of users at the desk, including those currently being serviced. The sampling method employed in his study resulted in measurements of L for the thirteen one hour intervals between 8:30 AM and 9:30 PM. The number of servers, s, varied from one to four during the period of data collection.

Given μ, L, and s, the appropriate model from Hillier and Lieberman was used to calculate λ (assuming Poisson arrivals). For some time intervals, this resulted in four estimates of λ since s varied from one to four within that individual interval. It was necessary to determine a single estimate of λ for each one hour interval since student servers are scheduled in one hour multiples. Assuming steady-state measurements, a single estimate of λ was determined by averaging the four $\lambda^{\prime} s$.

$$
\begin{equation*}
\lambda=\frac{1}{N}\left(n_{1} \lambda_{1}+n_{2} \lambda_{2}+n_{3} \lambda_{3}+n_{4} \lambda_{4}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{i}=\text { estimate of } \lambda \text { with } s=i, \\
& n_{i}=\text { number of measurements with } s=i, \\
& N=n_{1}+n_{2}+n_{3}+n_{4} .
\end{aligned}
$$

Using the nethod described above, λ (in users per minute) was determined for each of the thirteen one-hour intervals between 8:30 AM and 9:30PM. The results are shown in Figure 2.

Given λ and μ, the process is adequately described and personnel can be allocated to the above periods as follows. The procedure used was to allocate personnel so as to minimize average user waiting time, W. Waiting time includes that, in the queue and the actual servicing. Dynamic programming [1] was used to minimize

$$
\begin{equation*}
W=\frac{1}{\lambda}\left(\lambda_{1} W_{1}+\lambda_{2} W_{2}+\ldots+\lambda_{13} W_{13}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda_{i} & =\text { average arrival rate } \text { in } i \text { th neriod, }, \\
H_{i} & =\text { average waiting time in ith neriod, } \\
\lambda & =\lambda_{1}+\lambda_{2}+\ldots+\lambda_{13} .
\end{aligned}
$$

It was assumed that no more than four students could be allocated to a given interval because of the limited space behind the reserve desk.

RESULTS

Figure 3 shows W as a function of man-hours per day, T, invested in the thirteen one-hour intervals. The current allocation is thirty man-hours. Reducing the manhours to twenty-five, a reduction of one-sixth, increases W by a factor of approximately five. Increasing T by one-sixth reduces W by approximately one-eighth.

The optimal allocation of personnel for several values of T is shown in Table I.

	MAN - HOURS, T				
TIME INTERVAL	26	28	30	32	34
$8: 30-9: 30$	2	2	3	3	3
$9: 30-10: 30$	2	2	2	3	3
$10: 30-11: 30$	2	2	2	2	2
$11: 30-12: 30$	2	2	2	2	3
$12: 30-1: 30$	2	2	2	3	3
$1: 30-2: 30$	2	3	3	3	3
$2: 30-3: 30$	3	3	4	4	4
$3: 30-4: 30$	2	2	2	2	3
$4: 30-5: 30$	2	2	2	2	2
$5: 30-6: 30$	1	2	2	2	2
6:30-7:30	2	2	2	2	2
$7: 30-8: 30$	2	2	2	2	2
8:30-9:30	2	2	2	2	2
AVG. WAITING					
TIME (MIN.)	2.98	1.80	1.65	1.55	1.47

OPTIMAL ALLOCATION OF PERSONNEL
TABLE I

CONCLUSIONS

Table I shows that there is a traas-off between man-hours (dollars) and customer waiting time. If the cost of customer waiting could be put in terms of dollars, perhaps as suggested by Morse [2], the trade-off could then be made. Another approach would be the use of decision analysis in a manner similar to that discussed by Rouse [3]. Unfortunately, time did not allow for an analytical approach to this trade-off. However, Table I indicates tiat the "best" T is probably in the twenty-eight to thirty-two hour range.

It is important to emphasize that the average waiting times shown in Figure 3 and Table I assume an optimal allocation of man-hours. Other allocations than those indicated in Table I may result in substantially higher average waiting time. For example, if the allocation of twenty-six man-hours was changed from that in Table I to an allocation of two man-hours for each of the thirteen periods, the average waiting time becomes 7.38 minutes. One should remember that 7.38 is an average and some users will experience much longer waiting times. The reason for this dramatic increase should be evident from the demand curve in Figure 2.

This situation is somewhat improved by the fact that the Reserve Book Room
supervisors work at the reserve desk when the queue becomes large. However, it would seem that one would not want to schedule supervisory personnel for regular shifts at the reserve desk. Thus, man-hours should not be decreased below twenty-eight hour

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support and enthusiasm of George Beal, Head of Circulation, and Anne M. Smith, Reserve Book Room Supervisor.

REFERENCES

1. F.S. Hillier and G. J. Lieberman, Introduction to Operations Research, HoldenDay, San Francisco, 1967.
2. P. M. Morse, Library Effectiveness, MIT Press, Cambridge, 1968, pp. 79-82.
3. W. B. Rouse, "Optimal Selection of Acquisition Sources", submitted to the Journal of the American Society for Information Science.

BOOK SELECTION
Synthia 3. Koster

Abstract

: The concern of this paper is to analyse the present acquisitions policy and to submit proposals that would lead to a rational and balanced building of resource materials in the University Library. Faculty book selection policy is investigated and subjected to statistical tests to determine which practices result in the most effective book selection.

INTRODUCTION

At Tufts, the responsibility for book selection lies primarily with the individual professors in each department. Specific allotments are made to these departments on the basis of the number of undergraduate majors, courses offered, and other criterla concerning the present status of the collection in that area and the importance of the department with respect to the University as a whole. In some departments, ordering is prolific, if not always discrimineting. and the allotments are often exceeded. In these cases, book orders are sent back to the particular department. from the library, to establish priorities for purchasing. In other departments, ordering is sparse and without some input by the library, these areas are nealected altogether. Retiring professors, or those leaving for another appointment. if not replaced by another similar speciallst, leave collections untended. Dun to the increasing scarcity of non-current publications. Inattencance to a farticular area for a period of years reduces even a once aderuate collection to a weak and dated one. In addition. if the orliginal professor emphasized a specific area within a hroader field, then left his unsition at Tufts, there is no reason to expect that his or her replacement will order books complementing the existing collection. Ihls leads to uneven development even within a narrow fleld.

Even if a particular professor has a great dosil of Interest in book selection, the shear physical effort of screening dozens of publishers' lists, spesial area reviews. current publications' lists, andthose for out-of-print materials requires more time than that avallabic to most professors who frequently have invelvements outsice the zeneral research and course requirements. often. thounh professors recelve a great deal of ilterature and reviews, they do not have ready accessibility to the vast number of blbllographic materials avallable to the University Library staff.

As a result of the inadequacy of faculty selection, at least total dependance on such, many librarles in the United States have begun shifting at least the major portion of responsibility over to professional ilbrarians in the university library. Such a system has existen in many German universities for over a century and although their situation is somewhat different than that of
most or the American universitice, the major advantages to this particular means of bullding a university ilbrary appear to also apply to many of the American university librarles. Instead of having major responsibility for book selection in the library, where it appears to reside as far as administration, philosophy, and rationality, it is with the raculty who have little accountability. There is alsc an apparent lack of flexibility due to the fact that most of the t.ntal allocation for purchasing resource materials for the library is in the hands of the individual departments. This would tend to restrict large purchasing, by the library itseif or by an individual department. Since most professors order only in specific areas they are interested in, the peripheral areas such as socio-economics or political anthropology are neglected. Unless there is input by the ilbrary staff, which cannot be expected, serious gaps in the collection might arise.

Overall coordination promotes an even and balanced growth in the areas necessary for support of the library's clientel- its students. both undergraduate and graduate, and the professors and staff. The University Library at Tufts, hopefully would reach the point where it could anticinate these needs. Eventually, if the Library is to have continued balanced growth. this shift away from faculty book ordering to selection by professional librarlans must take place. Rationally. book selection, and the appropriations for purchasing such material belong within the Library. Faculty input should remain a significant part of selection as a whole but should not be the dominant force.

APPROACH

A questionnaire (shown below) was distributed to the faculty concerning sook selection in order to determine the criteria used in ordering within the departments. questions were posed about the existence of planning, both long and short-range, the blbliographic materials consulted, possible support for coordinated purchesing within the consortium, and specifically, the number of books and periodicals ordered by the individual professors each year. Information concerning length of time at Tufts. status within the department and department were also requested. The results were tested for correlation, cumeulative frequency distributions were tabulated and tested for their statistical significance.

In addition, the three schools Involved with Tufts University in the consortium were investigated as per their book selection policies.

BESULTS

Correlations were set up between all variables and $1 t$ was found that for all but a few varlable pairs. the correlation was negligible. The pairs that had some correlation were all statistically significant but the actual correlation was not particularly significant, generally explaining only a small portion of the varlance between the two variables.

Cummulative frequency distributions for seven variables
were tested for statistical significance and it was found that those

1. How many books, on the average, do you request for order in a year's time? Periodicals? Other (please specify)? To your knowledge, are all of these materials purchased and if not why?
2. Name some of the materials you use (book reviews, publishers ${ }^{\text {® }}$ lists) in order to select books/ and or periodicals.
3. Are you responsible, within your department, for one particular area of study? If not, do you coordinate your selection with the other professor or professors who share your fleld of interest?
4. Do you or a student on work/study check all orders against the card catalogue prior to submitting your list to the library?
5. Is there any short range planning, per year, for the particular development of one area within your department? If so, how is this determined?
ó. Is there any long range planning within the department to build a collection of basic materials only or is there some general plan for development, to the "research leve?" in a particular ileld?
6. Do you feel that the selection of books belongs primarily within the separate departments, if so why?
7. Would you support a shift of selection from individual professors and departments to a professional bibliographer in the Library. if not why?
8. Due to money constraints on the individual departments, is there any internal division of allocations between areas of study or is it first-come, first-served?
10.Is there any attempt to categorize the requested books according to importance prioir to submitting the list to the Library? (eg. "top priority". "necessary if money avallable") Jf there is no such system, wauld you support the institution of one?
9. Do you have any specific suggestions as to how book selection can be 1mproved?
12.Tufts University has joined three of the surrounding universities in cross-registration and there is limited coordination between the various libraries (including Boston Public Library). Would you advocate joint purchasing of particularly esoteric materials between these libraries-or intensive development in a particcular area of study at one of the librarles with other libraries contributing a portion of the cost?
10. For those departments concerned, is there any coordination, at least at the level of checking available materials, with the Fletcher :̌chool Ilbrary?
11. When a new program/course is added, is there any study of the present collection in this area, or a speciflc list of necessary materials submitted to the IIbrary prior to the program's inception?
professors responsible for a specific area of study within his or her department ardered significantly more books than those not responsible. In a ratio of about two to one. (t-test, 0.025 level) Results showed that those professors either having their own short-range planning or were members of a department having such planning also ordered significantly more books than those professors lacking all short-range planning. (t-test, 0.005 level) Assuming that those responding to the questionnalre are more interested in book selection than those not responding, it would be expected that both the results of responsibility in an area and short-range planning would be even more significant if a larger sampling was obtained.

The results of the investigation at the other schools participating in the consortium tend to substantiate the assumptions that faculty input is generally not adequate for building a balanced collection. Both Boston University and Boston College have book-selection policies requiring professional acquisitions librarlans. It was felt at these schools that faculty input was not adequate and was uncoordinated with respect to the total collection. The shift to professionals has been in the last four years and has been found to be superior to the previous policies of faculty selection. Although there is continued faculty input, it is coordinated closely and in consultation with the librarian responsible for their field. In both cases. faculty opposition has not been a problem though at Boston College there is a continuing lack of interest in library selection policies which serves to limit faculty input. Brandels University has a selection policy similar to that at Tufts University. Their policy appears to be based on a lack of money avallable for hiring an adequate staff for an acquisitions department with the responsibllitles of those at Boston University and Boston College. Also, there seems to be general satisfaction, on the part of the Director of the Library, with the quantity and quality of faculty book selection. Though there is no specific plan for any future shift to professionals, the feeling is that there would be little faculty opposition if such a shift occurred, providing that professors' orders were still given high priority for their selection.

CONCLUSIONS

Due to the lack of correlation between varlables such as number of books ordered and long-range planning or responsiblity and policies for adding new programs, it appears that there is little or no policy for book selection among a large percentage of the faculty. Though they are definitely opposed to a shift to library responsibility for acquisitions (64.7%), there does not appear to be any sort of continual coordination elther by the individual professor or in most of the departments over a long period of time. Unless such planning is introduced, allowing continued faculty control over book selection will serve to promote uneven, unplanned acquisitions. At this point. faculty selection is not a function of their status (tenured or non-tenured), years at Tufts, or the size of their particular department. Its basis appears to be significantly
related to responsibility and short-range planning. It is proposed thet since those professors with specific responsibility in an area within their respective departments do urder significantly more books than those without such responsibility, specific areas for ordering should be determined and assigned to each professor within all departments. This would increase accountablilty and perhaps the overall amount of hooks ordered. Each department spuld also insist on some planning-flexible yet with specific direction- of each professor. This should be articulated to all members of the department to increase coordination and comprehensiveness. This individual planning could be incorporated in the basic, long-range goals of the department itself. Library committees should be set up in each department, one or two professors depending on the size, in order to maintain optimal communication with the Library. It would also enable the department itself to ascertain whether areas are being covered adequately.

Because of the general policy at Tufts University. primary emphasis has been placed on building the undergraduate collection. There should be serious re-evaluation of the existing graduate programs. specifically the doctoral programs. If the policy is going to support undergraduate needs first, there should be a similar emphasis within the departments themselves. Certainly if the cost of building up an adequate set of research materials for a graduate program is explicit ly considered as a cost of that program, decisions could be made with respect, to the existing programs (and any new ones proposed) in a realistic manner.

Concerning the long-range goals of the University Library, there should be serious discussion among those elements most con-cerned- the administration, the faculty, and the Library. The pattern set up by the top fifty colleges has indicated that Tufts will have to re-consider its present acquisitions' policy in the future. If there is going to be substantially more support for graduate programs than there has been in the past. a shift to professional librarians with responsibility for book selection and general collection building must take place. If the policies regarding the Library's growth are going to remain primarily concerned with development of an undergraduate collection, then the changes indicated within the departments and between the departments and the Library should be adequate.

Though the sample size is not great, it is relt that the conclusions are supportable. if the assumption is made that the more active professors responded to the questionnaire. Of the 21 departments that returned at least one questionnalre, there are about 250 fullatime professors (instructors were not included in this sampling), resulting in a sample equivalent to about $1 / 5$ of the total professors in these departments. In some departments. five professors returned questionnalres and thus represented from $1 / 5$ to $1 / 3$ of the total in the department. Though the statistical evicence produced only two significant areas affecting book selection. it is felt that it does represent a portion of the faculty and thus reflects at least several of the important attitudes towards book selection.

The ald extended by the Library's Director, Mr. Komidar, the acquisitions librarian. Kr. Jones, these frcies ors personally heloing in setting up the questionnaire, and the acquisitions ilbrarlans at Boston University, Soston College and Brandels University, the Director of the Library at Brandels all contributed to the success of this study and provided, in most cases, information otherwise inaccessible. REFERENCES

Dantion. J. Ferlam, Book Selection and Collections: A Comparison of German and American University Libraries, New York. 1963, Chapter III.IV.

Acquisitions Follcies and Interests of the UCLA Libxary: A Panel Discussion by Members of the University Administration, Facuity and Library Staff. November 23. 1953. Occalsional Fapers $\ddagger 1$ University of Californta Library. Los Angeles. 1954..

A STUDY OF THE UTILITY OF ENGINETRING SCIENCE PERIODICALS
 Toseon Codi
 \&
 Elaine Mroz

ABSTRACT
The nurnose of the project was to determine criteria for nlacing journals into remote storage in order to provide space for the aceommodation of new inurnals in Tufts Lufkin Engineering Library. Journal usace was sturied as a function of type of journal, and of age of a particular volume at the time of usace. The Bradford Distribution was used as a method of correlating the data with results of previous researchers.

INTRODUCTION

Lufkin Library is the larpest branch of the Tufts University Libraries. In Lufkin, volumes gartaining to the Eneineering Sciences and in some ceses, to Applied Mothematics and Physics are housed. The Journal Collection consists of roushly 400 Atles , some of which date from the late nineteenth century. As plans are under way to combine the Encineerine Collection with the entire Mathematics and Pnysics Collection in the space which is currently filled by Engineering volumes, it is ohvious that stens must be taken to provide space for the most frequently used volumes.

For the purposes of the project the journals were classified into two chtegories according to emphasis. Those journals which were primarily academically oriencted, dealing with articles of a theoretical or research nature were classified as "scholarly." Journals which were commercially oriented, pertaining to aprlications and techniques, and dealing with the theoretical aspects of a nroblem on a more superficial basis were designated as "trade" jouranls. These classification were determined by insnection of recent volumes. It was felt that the utility of a iournal may decrease differently with time dedendent upon its characteristic. Of the journals for which deta was collected, 68% were of a scholarly designation, and 32% were considered trade journals.

Library jouranl usage also was classified into two categories. The first category is that of charge=outs. In this case, e journal is removed from the librarv for a span of up to two weeks in the case of sturents, or up to a month for faculty. There is, however, a liberal workinc renewal policy in which books are charged-out for in indefinite length of time subiect to call-birks. this option seems to be most widely usad by graduate students working on theses or research projects. The charae-out date is not recorded; however, the due date, which in this case is totally analagous is recorded generally in two spots. The due date is stamped on both the circulation card which is filed at the circulation desk while the volume is out of the library, and on the inside back cover of the volume. In perieral, if the number of usages were so Dxcessive as to reguire more than one card, the r-cord of prior usiges could be found by checking the bick cover.

The second ceterory of usare is the in-house usages. In this case a inurnal may be tiken off the shelf for quick reference or to make a cory of a particular pare or article. Even more sienificantly, the in-honse use may be for the rurcose of researching a project or paper. In this case, the in-house usage is verv nearly ecnivalent in utility to a charge-out us:ae.

A further natural distinction to be made is between bound and unhound nerionjcals. As lroaciv statod, hound volumes provide a ready and sce:rrite record of asapes ind dates. Anwever, unhound journals oresont : srfcial nroblem in then there is no permenent charge-out

$$
-7 P
$$

record. It apreared that unhound jomrnals were rarely ever unstacked. Howevor, if a charge-out does occur, the usage is tomroriril" recorded on a pre-nrinted slip of paper at the circulation desk. The due date may he stamped on the inside back cover, or a slip with the due date may he carer-clipped to the inurnal. In both instances. the record is nejther permanent nor reliable.

Althourh some research has been done inth the study of obsolescence of scientific inurnals, one of tir foremost resesrcher, B.C. Brookes, emphasizes the need for recoonit on of the uniqueness of each library's situation (1). Usage in a university library will be different from usage in a public library or usife in a research firm. However, there may be different user needs and habits between üniversities. In addition, even within a university there are at least two different classes of usersi faculty, who are often contributors to the literature; and students whose journal usage may be viewed as a means of ultimately becoming a user with characteristics similar to the faculty. thus, although we can lonk to the work of orevious researchers for quidance, we must derenc on our own results for our conclusions.

In 1948, S.C. Bradford (2) Droposed a model by which he saw means of dividing Deriodical literature into zones of usefulness. His law states that if periodicals are arranped according to the number of artincles that each contains on a riven topic, then the total periodical collection can be divided into equal usape zones sugh that the successive zones will form a zeometric prorression of linın in^{3}.... with a nucleus of journals comprisinz arest nercentace of the usapes. This orinciple has subsequently been expanded to consider acquisition and usages as related to a similar pattern of nucleus and progression of journals of a given utility. Perhans because of the relatively small number of journils studied, the permetric orogression did nnt seem to hold. However, the concerts of a nucleus of most-used journals and of zones of equal usage have nroved useful in the data analysis. This phenomena may he viewed from two angles: one from the dimansion of aye in which we assume the nucleus of uses is around the tire of publication of the given volume; the other from the dimension of individual journal, where the nucleus of which journals contribute the most to usage figures must be determined from the collection of data.

It is to be noted thet there is an tistorical usage of periodical scientific literature as well as a nurely scientific usage. As a journal of a fiven year geometrically an roaches scientific obsolescence, it mav gain somewhat from an historical perscective. Exictly what constitues a scientific usare as oposed to an historical one is difficult, if not imnossible to determine. Checking back to an orisinal source may be viewed as ejther kind. However, for the nurnoses of this endeavor. onlv scientific usares were considered significant,

DATA COLLECTION

In many previous studies rasestrhers felt there was a paucity of available data, or a oroblem with attaining a renresentative sample, This was not soen to be a prohlem in this darticuiar instance, as every avejlable bit of data was recorded and compilad.

As previously implied, it wis feasible to collect data only for jnurnals which were bo'nd. filthough a significant portion of the collection was unbound, we must trust thet we are not drasticelly biasing our results by considering only bound conies. Sirilarly, we groided occurrences of historic:-l usares by arbitrarily choosing as a strurting noint for d:t ta collections.volumes published in 1950. Thus, 24 years worth of recordable dita was transcrihed.

-3?-

Charge-out usaces were recorded by notine the journal name, year of rublication of the snecific volume, and the dite of pich usige from binding until the rresent. In effect, the information oresent on the circulation card was redifated. If a usase occurred in a volume which contained more than one year"s publication, the usage was recorded as having occurred in the earliest year. In this way we give the user the benefit of the doubt in any ace-usace analysis. Renewals were recorded as senarate usaces, but only to a maximum of two renewals (or, equivalently, a total of three usages) for any one user at one time. This was arbitrarily chosen to minimize the तifference between a "long" charge-out and one in which the volume is renewed deriodicilly but perhaps not actually used. Subsequent to the recording of data, the journals were checked to determine their content as being trade or scholarly.

In-house usiges were racoried by relying on the good-will of the library patrons. A sion explainino the project was posted in the stacks, slong with notes in the desks reguestino that any journal used during the visit to the library not he reshelved. Daily trins to the library were mide at which tire ef journal use was recorded along with the date of the volume and the date of the usage. The volumes were then reshelved to lessen the chence of : journal being used twice but recorded onlv once. 'his data was collected over a period of two months. Unfortunatelv, due th time constraints, the time period was mid-semester, presumbly a low noint in in-house usage.

DATA ANALYSIS

In analyring the data, it was necessary to keed in mind two separate methods of annroach. The first objective is to determine which journals comorise the nucleus of most used books, after Bradford's prodosal. and to determine in which fone fny given journal falla. The second objective is to determine how journal usage decreases with time.

In determ'ng the Bradford distribution the journals were first sedarated by the scholarly-trade criterion. The scholarly journals comcrising over $2 / 3$ of the titles were arranged in descending order focording to the total number of usages of the journal over the 24 year period. The journals were then grouned into 6 zones, each corresponding to roughly 200 usages. The results of this grouping is shown in Table 1. As can be seen, the first three zones consist of only 10 journal titles. Thus, 7% of the scholarly journal titles account for 50% of the usaoes since 1950 . A similar arrangement was made of the trade jnurnals, excert that in this case 7 gones corresonning to 85 uses each were assumed. From Table 2 we see that the eiaht iournals which comprise the top 5 zones account for 71% of all trade journal use.

It is also interesting to note that 35% of the scholarly journals, and 33% of the trade iournals were never charged-ont over the 24 years which were studier in this project. These journals are listed in Table 3.

We have, in this analvsis neplected the in-house usage. Are the journals referred to wile in the library the same as those which are freauently chrroed-out? Strangely ennugh, this did not prove to be the case. In both trade and scholarly journals, there anpeared to be an unfitir balance towart usaoe in the rarely charged-out zones. "There is no apparent exolanation for this, except that there may have been a common reason for not usine these journals outside the library; and for usins them whila in the library. Nonetheless, this phenomenon must not be over-looked.

In determining journal usare as a function of aoe, the distinction was still mantained between trade and scholarly journals. sowever, it was found thet the difference in ueare was not very significant, with

TABLE 1: Usare Zones for Scholarly Journals (number listed is number of times used since 1950)
Zone I
Water Poll. Cont. Fed. J. 125 Sewage \& Industrial Wistes12585
Zone 2
ASCE Transactions 84
Inst. of Radio Eng. Proc. 59
Sanitary Enẹ'ne J., ASCE 62
Zone 3
Amerinan Concrete J 35
Am. Water Wrks J. $+9$
Enojinering News Record 36
IEEE-Microwave Thry \& Tech. 54
J. of Fluid Mechanics 42
Zone 4
Archives of Envmntl Health 24
Aviation Wk \& Spce Tech. 24
Bell System Tech. J. 2.5
Electrical Eneineoring 17
Geotechniaue 17
IEEE Proceedines31
Inst. of lietals J. 21
J. of Appl. Mech. 18
Soil Mech \& Fndtns,ASCE 22
Zone 5
Air Poll. Cont. Assoc. J. 11
Andlied Scientific Rsch. 9
Am. Soc. of Mech Eng. J. 9
8
Atmoscheric Eneviron
Atmoscheric Eneviron
J. of Boston Soc. of Civ. Ene. 15J. of Heat Transfer9
J. of Sound Virretion 10
N.E. Water Wrks J. 13
Solar Enerey8
Struct. Div. J., ASCE 10
Traffic Quarterly 14
Waterwavs\& Harbors, ASCE
Water Resources Rsch. 138
Zone 6
Aeronautical J.Am. Ind. Hyge ine Assc.ARS
ASCE Power Div.
ASCE Transnortation
ASCE Surveying \& Mapring
Am. Soc. of Mith Statistics
ACM Communica+ions
Autemation \& Remote Contro?1
AIAA Journal1British J. of Appl. Phys.1
Bullntin of JSME1
Eng. Mech. Div. ASCE1
Exprmntl Mechanics
Electronic Technoloey2
General Notors Ene. J. 3
Hizh Spd. Firnd Transptn J. 2
IEEE-Electronic Devices 6
IEEE-Computers 4
Zone 6 (cont.)
IEEE-Computers 4
IEEE-Nuclear Science 4
IEEE-Antennas \& Propgtn 3IEEE-Information TheoryIEEE-Circuit ThryIEEE-Communication Tech.
2
IEEE Power Anparatus \& Systems
IEEE-Aerospace 2
IEEE-Audio \& Electrical Acoustics 1
IEEE-Brdcst \& TV Rcvrs 1
IEEE-Geoscience Electronjcs
IEEE-Geoscience Electronjcs
IEEE Instrumntn \& Meas 1 1
IEEE-Magnetics 1
IEEE-Sonics \& Ultrasonics 1
IEEE Sysics IEEE Systems \& Cyhernetics 1
Int. J• of Ene. Sci. 1
Int. J. of Non-Linear Nech 1
Int. J. of Sci \& Tech. 1
Int ${ }^{\text {J. of Mech. Sciences }}$?
I. B.M. Journal 8
Irrigation \& Drainage, ASCE 4Int. J. of Heat \& Ninss TransferJ.of Inst. of Electrical Eng.
Int. J. of Solids idruc.
Internetionel Science \& Tech. 1
J. of Applied Mth \& Mech. 1
J. of Busic Engineering $?$J. of Materials
J. of Ene. for Industry
J. of Me.ch. Enge'ne Sciences 5
4J. of of Inst. of Elec. EngnrsJ. of Nth \& PhysicsJ. of Composite MaterialsJ. de Nechanique

J. of Mech \& Phys. of Solids J. of Mech a Phys. of Solids | 3 |
| :--- |
| 2 |

1J. of Aircraft
1J. of Eng. SciMachinery
Wachine Design 3
Materials Science \& Eng'ne 1
Metallurgical Soc. of AIME Trnsctns 1
Methods of Computation 2
Materials Research \& Stnds 2
Publif Roads 2
Solid State Electronics 5
Soil Nechenics \& Fndtn Eng. 2
Quarterly J. of Nech. \& Appl. N.th 1
Quarterly of Appl. Mth 1
SIAM Review 1
Nuclear Safety 1
Nuclear Ene ineering Design 1213?1
trade journals reaching obsolescence slightly sooner than do the scholarly. As can be seen from the eranhs in Fig. 1, maximum usage occurs 2-3 years after publication and then beains a steady decline. The concept of half-life is useful in determining the rate of obsolescence. Helflife is the term used to denote the number of years in which half of the total numher of remaining usages will occur. In other words, if a iournal is to have a total of 50 uses, 25 of these will occur during the first half-life, 1.2 will occur during the second, 6 in the third, until the no-usage state is asymototically aprroached. There anpeared to be a well-iefined half-life of 3 years for trade journals. The value for schol:rly journals was not so easily determined. 50% of the total usages for scholarly journals was raficied within $4 \frac{1}{2}$ years. Mowever, the obsolesconce accelerated somewhat, with 80% of the usages having occurred after 9 vears, or 2 half-lives. This rapid acceleration continues for scholarly journals, so that by the end of 3 half-lives (131 years), 94% of the usages have occurred, whereas in 3 of the trane journal half-lives, only 87\% of the uses occurred. In terms of real years, which of necessity is the messure which will be used, it is found that trade journals reach their maximum usage sooner, and dron more quickly to obsolescence than do scholarly journals. For ex:mple, after 12 years, 91% of the scholarly usade has occurren, as odrosed to 95% of the trade usage. After 15 years, $9<\%$ of the scholarly usage has occurred, and 99% of the trade charge-out usfage. Once aer in, it is important not to neglect in-house ugage. It was found that 94% of the in-library usaees were volumes published since 1959, or in other words, 94% of the usages were of volumes less than 1.5 voars of age.

CONCLUSION

In final analvsis, it apnears that the decision of when to remove journals from onen circulation is matter of choice for the library staff, based on the dats now available. It appears to us that "retiring" iournals 15 vears subsequent to piblication is certainly a reasinable policy, as it provides for rourhly 97% of the usfge. However, it would also seem reasonabla to retain in the library all volumes of the journals which fall in the top 4 zones in the trade category, and the tor 3 zones in the scholarly division. Thus, the 16 most frenuently used journals would be available at all times. The only conflict of this dolicy with the dita collected would be in the strange zoning of the in-house usages. However, it is felt that because such a large percentage of even the in-house usos occurred when the journals were less than five years old, retaining 15 years of volיmes will cover all but a very small dortion of desired uses.

It is important to note the nossible pit-falls in these recommendations. Firstly, we have completely discounted "historical " usage on the assumption that it seems s small sacrifice to make in terms of proviतing more snace for current literature. There may be those who disegree with this supposition. We were uneble to collect data for unhound volumes, and their usare pattern is only assumed to be similar to that of bound volumes. Thirdly, it is important not to generalize the results $n f$ this survey to any other situation. For instance usage of math and physics journals may nossibly be of a different nature than that of encineerine journals. Finally, there is a need for the periodic check of the validity of the results. A iournal may at this tite be in a low usage zone hecause it has iust recently been subscribed to by the library. In fifteen years it may have become so popular as to move into a ton zone. Similarlv, new interests in different encineering tonics mey aprear in the followina vears. For instance, as air and water rollution journals have become nopular in the dast six or seven years, inurnils deating with eneroy nroblems will almost certainly come
into fashion in the next two to three years. Thus, it will be imporm tant to watch elosely the behavior of journal users to keep the library calicy in accord with user demands. It would seem advisable to keep current data on disappointed users by asking them to indicite whether thev were unable to use a inurnal because it had been placed in storage. In this way, any inconsistencies between policy and user needs can be auickly recoenjzed and rectified. In addition, we recommend a continuing study of in-house usages to see whether the trends which were apparent from our small amount of data are valid.

REFFRENCES

(1) Bronkes, $\mathrm{E} . \mathrm{C} . \mathrm{D}^{\text {" The }}$ Growth, Utility, and Obsolescence of Scientific Periodical Literature." Journal of Documentation 26(Dec.'70): 283-94
(2) Bradford, S.C. Documentation. London:Lockwood, 1948

```
Other references:
Brnokes, B.c. "Bradford's Law and the Bibliography of Science* Nature, Dec. 6, 1969,pd.953-56
```

Goffman, W. and Morris, T.G. "Bradford's Law and Library Acquisitions" Nature, June 6,1970 , po. $92:-3$
Line, N.B. "The Half-Life of Periodical Literature, Apparent and Real Obsolescence" Journal of Documentation 26 (March 1970): 46-54

TABLE 2: Usage 7.ones for Trade Journals (number listed is number of times used since 1950)
zone 1
American City 73
Zone 2
Electronics
71
$\frac{\text { Zone } 3}{\text { Civil Eneineering }}$
Water \& Seware Wks.
42
Zone 4
Eneineorine
40
Public Works
Zone 5
Machine Desion
Prorressive Architecture 48
zone 6
Illuminating Engineer $\quad 9$
$\begin{array}{ll}\text { J. of Franklin Inst. } & 12 \\ \text { Matrls. in Ene. Desjon } & 11\end{array}$
Nucleonics
Power i3
Royal Aeronautical Soc. 9
Water Wastes \& Eng'ng 19

Zone 7
 Air Conc. Htno \& Venting 1

Aerosnace Un-ineoring $_{1}$
American linchinist 6
ASHRAE 1
Automotive Industries 2
Consultino Ensineer 2
Control Engineering ?
Electrical World
5
Electronic Desien

Zone 7 (cont.)
Industrial Design
Industrial Research 2
Industrial ${ }^{\text {anter Eng'ng }} 4$
Machinery
Wechanical Engineering
lie tal Progress
Power Flant Engineering 3
Prestressed concrete Ins. 1
Product Engineering 8
Q.S.T. 1

Railway Age 1
Roads \& Streets 1
S.A.E.

Structural Ensineer 6
Traffic Quarterly
Wastes Engineering
Weter Works Engineering
World Oil

Scholarly
Acta Mechanica
Acustica
Aeronautical Quarterly
Am. Soc for Eng'ng Education
Electronics Letters
Heat Mransfer
High Prequ. Tech \& Electr
Hygeine \& Sanjtation
IEEG-Component Parts
IEFFR-Brondcasting
IEEE-Educstion
IEEE- Electromng. Comp.
IEEE-Industry \& General Aprl.
IEES-Ind. Electrncs \& C_{n} trl. Inst.
IEEE-Prod. Eng'ng \& Prdctn
IEEE-Relianility
IEEE-Solid State Circuits
Int. Dif. of Health Leg.
Ingenieur
Ingenieur Archive
Inst. of M.E. Automntive Div.
Int. J of Numerical Vthds. in Eng.
J. of Bionechanics
J. of Engineering Grenhics
J. of Engineorins for Pnwer
J. of Lubricention
J. of Materials
J. of Motion Pict. \& T.V.
J. of Nuclesr Physics
J. of Physics
J. of Research (Eng. \& Inst)
J. of Strain Ánalysis
J. of Spcecrft \& Rckts

Netals Science Journnl
Med \& Bio. ${ }^{\text {chng. }}$
Mettallureical Trnsactns
Nuclear Science \& Eng.
Power Reactor Tech.
Pvrodvnamics
Scridta Metallurgica
SIAM J. of Apnl. Math
SIAN J. of Numerical Analysis
Soviet Elect. Ene.
Soviet Radio \& Eng.
Staub
Vocuum
Zeitschrift fur Ange. Nath. und Niech.

Tride
Aerospace
Air Engíneering
American Aviation
Aerodlane
Datamétion
Desalinization
Electronics \& Power
Enoineers Digest
Factory Mngmnt \& Msintenance
Fesctory
Graphic Science

Industrial Electronics
Inst. of Metals Jrn.
Iron age
Industrial Llectronjcs
J. of Research(Radio Science)

Wetals \& Meterials
Modern Manufacturing
Modern Plastics
lietel kinishing
Mnfctng Eng. \& Mngmt
Problem of wFO Transmission
Fublic Power
Petroleum Kefiner
Rndio \& Electronic Eng 'ng
Radio Science
Reaction Fuel Proc. Tech.
Reactor Sci. \& Tech.
Revue de Metallureie
Rubber Chrn \& Tech.

OPTIMAL TRACING PROCEDURES by John Archer Bly

Abstract

This paper concerns methods of evaluation of library tracing systems, using statistical computer programs and system simulation. It siggests an effective use of cross-tabulation of data in order to find relationships and possible areas of improvement in staff-and user searching procedures. It investigates how the spacing and the number of traces affect user and staff costs in order to generate optimal tracing policies and possible educative programs to alleviate such costs.

INTRODUCTION

How effective are present tracing policies; do they minimize user and staff costs? The method of analysis used to answer such questions is quantitative and stresses the technical aid of a computer. Since data is readily available on library tracing aystems, in that one need only save trace cards, competerized data analysis is particularly suited for this subject. The programs used are simple and can be mastered by those with only a passing knowledge of Basic or Fortran. Any library wishing to implement the techniques illustrated, need only aak a local student or computer facility to rur. its data through a system such as the DEC 10 at Tufts University. In doing so it will obtain an evaluation of its system's tracing characteristics, the number of traces which should be made, and the optimal spacing between such traces.

At Tufts any user can ask to have a trace made on a book. The traees average the first, fifth, and innth weoke during which time such a user must wait until the trace is successful, an average of four weeks, or until the ninth weok when the beok is declared missing.* The number of books being traced times the number of weeks that they are out of circulation is defined as beok-weoks lest. Book-weoks lest are a cost to the user and are considered as a value to be minimized. The proposed methods attack the problem of minimization by simulating the effects that different tracing policies have on book-weeks lost, and by determinirg what areas contribute an over-proportional amount of boek-weeke lost.

The body of the paper is divided inte those steps that would be necescary to implemont the approach to trace evaluation advanced. It begina with data ceilection.

DATA COLLECTION
Statistically, the more sample data the better; as lonk as no major changes have been made on the tracing system, records geing -a-m------
*Data quoted in the first half of the paper results from several statistical computer studies made by the auther on the Tufts University tracing system.
back one or two years should qive a statistically accurate analysis. On the other hand if only two or three months are available, a good description of the tracing syatem can still be obtained, if the data is fairly consistent. Each trace repott should contain information as to where the book was found lie. the circulation file, the missing file, the correct location in the stacks, misshelved by x number of books, never found, etc.), the time elapsed before the book was found, the trace mumber on which the book was found (ie. the first, second, or third etc.), whether or not the book is usually located in a special location, the length of the call number, the discipline of the book, and amy other pertinent information that might affect tracing policy. Leaving out any of these tracing variables infers a lessening of the possible number of cross-tabula.. tions, and consequently a lower scope of evaluation. In particular, the time elapsed before the book was found, and the trace number on which the book was found are necessary for nearly all the techniques used in this paper.

S.P.S.S. EVALUATION

Haring typed the dats in convenient variable formats, the system is ready to be evaluated. Calling a statistioal package, such as the Statistical Packace for the Social Sciences (S.P.S.S.), at the Tufts University Computer Center, one asks that the relative frequencies of the variables mentioned in the last section be calculated, so as to procure ajeneneral overview of what is happening in the tracinf system. Thisuan idea of the relative importance of the different tracing areas, the effect that time has on the sucesss of a trace, and the possible lack of data points for any of the variables. Likely results are that one finds a large probabability of success for books found in their correct locations, and a comparitively small one for books located through the missing and reserve files. Any deviation from expected norits should reveal problem areas and perhaps indicate possible solutions. For example, if a user asks to have a trace made on a book, one expects staff to check the files nearby in order to try to locate the book, and thereby avert the necessity of instigating a trace. If one finds a larger than normal expected relative fraquency, such as the relatively large frequency found in the missing file at Tufts University, one questions why and searches for ways to reduce this figure. Likewise, if one finds that the relative frequency of books found does not decrdase with time or trace number, or if it varies in any peculiar way it should questiond, understood, and hopefully improved.

To engender an improved understanding of how the frequency of successful traces does vary with respect to time and trace number, one can obtain a pictoral grasp of the situation by askis the statistical package to plot some histograms of the time variables. A historram is an actual physical representation of the distribution of retatime frequencies. It not only aids in the evaluation of the probability distribution of the different areas in which the book was found, but it will also help to choose the probalistic tracing function with respect to time, when it becomes necessary to eimulate
the effects that different tracing policies have on the tracing systab considered. The following are examples of histograms calculated from cooss-tabulated data on the Tufts University tracing system for which the approximate frequency distribution curves are
included.

What deternines the nature of these curves? One expects to find a smaller percent chance of finding a book as time gces on, thus implying the cunc should be downard sloping. The general curve for all books is concave up. It orosses the y axis (percent of missing books found implying a oertain percent are found immediately, and then withan increasing slope the curve eventually becomes asymptotic to the time axis, implying thte a percent, albeit very small, will crop after a long number of weeks have passed. Concave upwards seems to be an expected rate from student ielinquence; some students just don't get around to returning books until after a good amount of time goes by - sometimes putting the book directly into the stacks to avoid paying a fine. Curves concave downerds, eg. the missinf. file, mssheived books, and to a lesser extent, the circulation file, seem to be related to the internal characteristtcs of the areas involved.

For example, books reshelved in the wrong locations. Here there is a very strong concavity nearly as many books found in second trace as the first. This statistic sharply contrasts the overall average. We look internally for the case and find (bolstered by contributing statistics) that the high percent found on the second try was most likely due to having missed a higher than normal percent of these books on the first trace. If these books had been shelved in their correct locations a much higher percentage of them would have been found on the first trace and a lower percentage on thefecond trace. The concavity to the origin means that books are returned to the shelf, on the average, later than usual - thus adversely affecting book-weeks lost. Comparing the meantracing time for misshelved and correctly shelved books, one finds an average of 3.05 and 1.86 weeks respectively, which implees over a one week mean difference. Considerinf that misplaced books make up about fourteen percent of all traced books, this amounts to a substantial number of book-weeks lost.

It is possible to look at these areas with a different statistic in mind, that is the percent of all books located in an area with respect, to the other areas over time. In the study done for Tufts, the missing file illustrates such a usafe. If one looks in the missing file on the first trace it should not be necessary to look there on later tracys, yet this area produces an increasinf percent of all books found with increasing trace number, 12.7\%, 18.2\%, and 28.6% respectively. Most likely staff underestimates the hifh proportionality, 15%, of books found there, and thus concentrates on other areas such as the stacks, ets.

Considering slow response rates as preventable, one seeks to find solutions which will tend to normalize the tracing time curves. For misshelved books an effort can be made to improve the tracing rate to correctly shelfed standards by searchine in such a fashion that books surrounding the correct location (statistics indicate a ten book limit on either side) are perused with an equal rigor to those in the correct location. This takes but a few seconds longer while it obviates the neccessity of later traces, thus saving time (staff and user) on the whole. As to the missinf file, it is surmised that staff underestimates the statisiical proportionality of tracing successes there, thus leading to a lack of exactness in its use on the first trace. Realizing the mall amount of time involved in searching this area and the substantial success rate (15\%), effort. 3 to normalize the missing file's. return rate through staff education of its relatse proportionality would seem worthwhile.

Other interesting statistics include the fact that nearly all traces originatinf on specially-located books were instigated precisely because those bioks are earmarked for special locations. Staff and users seem to have abnormally slow success rates with such books. An increasing percent, with respect to time, of books traced, 16\%, 21\%, and 28\%, are speciaily-located books. Realizing that these books represent 18% of all traces, education to insure improved recoonizance would most likely be lucrative.

There existm a slight sluggishness in the circulation file's traciap time curve, attributed to the misfiline of circulation cards. As with books, circulation cards are occasionally misfiled when a student worker is in a rush or when he confuses a long call-number with that of anothertook. An occasional inventory bolstered by staff diligence in searching several cards on either side of the card's correct locati:on, should ameliorate the situation.

SIMULATDON

In order to simulate the effects that differnt tracing policies have on a tracing system, one must estimate the system's disttribution function, fit $i+$, and construct equations which model the different policies. The choice of the parametric form of the probability distribution function, is one of the most important and difficult problems in the evaluation of data. Since such a function will be used as a base from which decisions are made, accurate construction is paramount. In particular it will help us to observe through system simulation, the resultant implications that different tracing policies have on the tracing system, and the number of book-weeks lost. Effectively our goal will be to minimize this number while remaining within various cost constraints.

At Tufts, histograms resulting from the statistical computer package, indicated that the overall tracing distribution function is approximately exporential with respect to time. Therefore, assuming that the probability of finding a book at time $t, f(t)=$ $x_{1} \exp \left(-x_{2} t\right)$, one estimates the x_{1} and x_{2} which most accurately reprcsents the data, by utilizing one or another cure fitting program available at most computer facilities. Testing the curve with roodness of fit criterion one can obtain an idea of the model's accuracy*, and consequently the validisy of subsequent simulation
essays.
In order to observe and eventually minimize the number of book-weeks lost to the user given certain cost restrictions, it is best to construct an equation which calculates book-weeks lost given a probability distribution function and the number of traces to be done. Since, for the Tufts system, the probability distribution function is approximately of the form $f(t)=x_{1} \exp \left(x_{2} t\right)$ one can calulate the cumulative distribution $f(t)$ by simply integrating. Then $F(t)=\left(x_{1} / x_{2}\right)\left(1-\exp \left(-x_{2} t\right)\right)$ which is graphed as follows:
\# of books found

Sample Cumulative Distaibition function for a givon tracing system.

To calculate the number of book-weeks lost one multiplies the number of books being traced times the time these books have been out of circulation. Suppose, for example, there are traces the first, fifth, and ninth weeks, respectively. After the initial trace the first week, $F(1)$ books have been out for one week giving $F(1) x(1 w k)=$. $\mathrm{F}(1)$ book-weeks lost. After the second trace on the fifth week there is a corresponding contribution of ($\mathrm{f}(5)-\mathrm{F}(1)) \times 5$ book-weeks lost to the system. En total, after the third trace there have been $t_{1} F\left(t_{1}\right)+t_{2}\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right)+t_{3}\left(F\left(t_{3}\right)-F\left(t_{2}\right)\right)$ book-weeks lost, where $t_{1}=1, t_{2}=5$, and $t_{3}=9$. Any book still unaccounted for after its third trace is classified as missing and, therefore, disregarded.

Given n traces to be made, one can, using arguments similar to the one above, find equations whioh calculate the number of book-weeks lost for those n traces. Using such methods, the author has written several computer programs which, given the number of traces to be made, prints out that trace sequence which minimizes the number of book-weeks lost; such a trace sequence being the optimal spacing pattern for that number of traces. For example, at Tufts during the period under study; 1487 book-weeks of circulation time were lost due to books which were in the process of being traced. Simply changing the spacing of these traces from the present policy or tracing the first, fifth and ninth weeks to a policy in which one traces the secrad, fifth and ninth weeks one saves more than one hundred book-weeks, giving approximately seven percent reduction. This change is rairly easy to implement requiring only staff education as to the time differences, but it cuts, without increased staff costs, the costs to the user.

Using programs of this sort one can simulate the effects of any policy changes-i.e. by how much will the attendant number of book-weeks r ise or fall by adding or subtracting a trace or two

[^0]to a given trace system? By how much will the trace system gain or lose by moving towards or away from any one optimal tracing sequence? Such questiens are fmportant for any library and should not, consequently be overlooked.

One of the first lessons of operations research is not to rely solely on one's intuition. Therefore ohe develops some form of cost-benifit analysis. Given an idea of the probability of finding the book on the nth trace, the general cost of each book (including processing and cataloging), and the cost of staff time, one need only estimate the time necessary to search in each. area to set up the following cost-banefit criterion:

Let $p_{n}=t h e$ probability of finding the book on the nth trace. Let V=the value of the book, including processing and cataloging and let $C=c o s t$ of search $=W_{8} \times T_{s}$; where $T_{s}=$ the staff time necessary to search, and $W_{s}=$ the staff wafe per unit time. To make the searches cost-wise valuable the expected value of these searches should be freater than zero. If not, one is spending more on looking for the book than it is worth. $0<E$ (value of search) $=p_{n} V-C$, or $P_{n}>C / V$. Therefore one only traces in an area as lonf the probability of finding a book is greater than the cost of such a trace divided by the value of the book.

Using staff estimates as to the lenkth of tine it takes to search in the stacks, and in the files for :a book, it was determined that at Tufts the probability of finding a book in the stacks and in the files should be approximately . 02 and .005 respectively before any one area merits a trace.

Using these criterion one checks the data to see how close the staff came to these limits. At Tufts, tracing in the stacks on the third trace yielded only a one and two percent success for misshelved and correctly shelved books respectively. The total, three percint, puts the system rather close to the allowable limit of 2\% probability for the stacks. For the files there is a four percent chance of finding a book, whereas the allowable limit is about half a percent. This means that there is a good leeway for expansion of the number of traces in the files.

If data is sufficiently large it is possible to use another computer program to pinpoint the optimal number of traces which should be made, ie. the amount by which one should expand the present number of traces. From the cost criterion it was established that one traces in an area as long as $C / V p_{\text {a }}$ the probability of success of the nth trace. Remembering that $F\left(E_{n}\right)$ gives the number of books found on the nth trace, $p_{n}=P\left(t_{n}\right)-P\left(t_{n-1}\right)$
Given optimal spacing for each sequencey onimmerely expands the number of traces until_ $F\left(t_{n}\right)-F\left(t_{n-1}\right)$
\# of books in stuy C / V.
This process can be resdily evaluated by using suveral programs available upon request from the author. These programs exhaust the different possible optimal spacing patterns and their attendant probability of the success on the last trace. Simple perusal estab-
lishes both the optimal number and optimal spacing of such traces for any given system.

One aholild then compare these optimal solutions with the previous method used. At Tufts University, criterion indicated that one should increase the number of traces by two, in the comparitively inexpensive to search files. This implies a twenty-five percent reduction in bock-weeks lost over the old system consisting of triacing with an optimal trace spacing solution consisting of tracing on the 1st, $2.5 t h, 4 t h, 6 t h$, and $9 t h$ weeks.

CONCLUSION
The S.P.S.S. program run for Tutts suggests education as a means to improve what seems to be slow response rates in the missing file, misshelved books and specially located books. Recosnicance as to the high proportionality of the missing file's success, increased rifor in searching. ten to fifteen books on either side of a book's correct location, and user education as to the importance of noticing whether or not a book is earmarked ior a special location should save both staff and users from a lot of areravation and time lost. In addition, statistics indicate that if students would eheck apain after a lay or two have pone by to see if the book the, want traced has turned up on the shelf, they would avoid what seems to be the greatest proportional contributer to book-weeks lost; that is internal bookhanding. A hand-out to inform users of the aforementioned problems would perhaps be the most effective way to acheive such an education propram.

Increasing the number of traces in the file areas and using the optimal spacing patterns supgested, a cut-back of over twentyifve percents book-weeks lost, can be realized in the Tufts University system. Similierly, any Iibrary investing in a propram oí evaluation, such as the one outilned here, should find a satisfying increase in user benefits while keeping a check on staff cosis.

ACKNOWLEDGEMENTS

The author is particularly indebted to Peter Berry, who is the staff member currently in charge of tracing at Tufts University, for his conscientious collection and collation of the traces used for this report. Mrs. Sieqenthaler, Mr. Beale, and Mr. Momidar also merit a note of thanks for the'r cooperation and advice.

AUTOMATED LIBRARY SECURITY SYSTEMS, EXTRAVAGANT OR PRAGMATIC ?

```
a.b. karlin, l.d. solomont, n.a. tanmna
```


Abstract

The purpose of this atudy is to investigate whether or not Wessell Library has a problem of yearly book loss that is large enough to warrant the installation of a sensitized security device. Our investigation has shown clearly that a sizable problem exists. Our report is divided into three sections. The first analyzes the workings and effectiveness of the available systems. The second describes the problems and solutions that local-area libraries have found. (Most of this information was collected during interviews with the staff of the various libraries). The third section of the report evaluates the deterrent systems with respect to Wessell's individual economic and physical problems regarding book theft.

INTRODUCTION
The problem of theft in libraries has increased drametically in recent years. Several companies have risen to the ehallenge of designing and building efficient electronic systems which are deterrents to book theft, and many U.S. libraries iave chosen to take advantage of these qutomated devices despite the costs involved. Our investigation of the situation has led us to the belief that the library security problem is large and that the remedies are basically effective, though not foolproof. Should Tufts University make the investment? Will the returns reaped justify the money and effort spent?

ANALYSIS OF LIBRARY DETECTION SYSTEMS: COST AND EFFECTIVENESS

To cope with these problems of book losses, libraries have installed electronic equipment which can detect books being removed without being properly charge out. Several such systoms which we have investigated and analyzed include the 3 M Tattle-Tape Book Detection System, the Remington Rand Booknfary System, and the Checkpoint Mark I and Mark II Library Security Systoms.

The theories of operation of these models differ with regard to the method of sensing the book nassing through the system; but all have the same essential objectiver to detect a book which has not been properly charged out.

These systems fall into two categories: "bypass" and "full-circulation" systems. To initiate either of these, firgt a portion of the library collection must be sensitized. In most cases, this is done by placing a thin strip or book plate made with a sensitive material in each book.

The library staff then resholves the books; and from this point on, all operations proceed as usual. When someone wishes
to borrow a book, it is taken to the circulation desk where the librarian processes the book as usual. In the case of a bypass system, if the circulation desk is set up at the exit, the librarian simply hands the book to the borrower around the sensing screen. The person is then past the device and will not trigger the alarm. Had the borrower neglected to give the librarian all the materials that $s /$ he wished to charge out, the alarm would have been triggered, and the turnstyle locked. This system is called a bypass system because the librarian must pass the book around the security device.

A full-circuiation system differs from the bypass method in that the books can be desensitized at the circulation desk and carried through the sensing devices without triggering the alarm.

There are several problems inherent in both these systems. A bypass system requires that someone be at the sensing units, which are typically located at the exit. If the circulation desk is immediately at the exit, this presents no problem. If the circulation desk is not at the door, each time a patron returns to the library with a charged-out book, the guard must recheck the book when the patron leaves so that the book cannot trigger the alarm. The full-circulation system alleviates these problems. It provides the facility for books to be desensitized. During the charge-out process, the librarian desensitizes the book so the borrower is free to re-enter the library at will. It also eliminates the necessity of a circulation desk at the exit; a guard would not be essential to recheck the books.

The 3M Tattle-Tape Book Detection System is a bypass system. The cost for all of the hardware is $\$ 17,500$ which includes the sensor, turnstyles, and controls for the system. A book is protected by a $\$.16$ metal target. There are several deficiencies in the 3 M system. Holding the boek at the proper level. or angle will allow $=$ bcrrower to take a book without completing the proper charge-out procedure. The sensing device is essentially a megnetic detector, which creates the problem of an unwarranted number of false alarms.

The Checkpoint Mark I Library Security System is also a bypass system. The cost for the hardware is $\$ 4,600$ which includes the sensor, turnstyles, and controls. A book is protected with a $\$.165$ metal target. This system is also a sophisticated metal detector which accounts for the occurrence of a large number of false alarms. The range of sensitivity is limited to a smaller area than other devices, allowing library users to easily avoid the system. Because of the deficiencies in the Mark i system, Checkpoint has recently introduced the Mark II Library Security System. This can be set up as oither aypass or a full-circulation syetem. The cost of the hardware is $\$ 5000$, and this includes the senging devices and turnstyles. Each book target costs \$.io. 17

If this system were to be implemented as a full-circulation systom, there would be an additional cost. In order to desensitize the book, the librarian would place an additional tag in the book. This desensitizing tag would be put in the book during the chargeout procedure and remored when the book is returned. The cost
for these additional tags would be $\$.005$ a piece. This system as a bypass sytem requires that the circulation desk be adjacent to the door. Problems exist when the Mark II is used as a fulf-circulation systemi for the desensitizing tage are easily removed, allowing a would-be "long-term" borrower to remove a tag and place it in another book in order to desensitize it. As a bypass system, the Mark II is nearly foolproof. This is primarily because the method of sensing is completely different than the magnetic field detection or metal detection systems. It seems, in addition, to be the simplest system to operati, though it does requires that the circulation desk be near the exit.

The final system we considered was the Remington Rand Book-Mark System. This is a full-circulation system. The cest of the hardware is $\$ 20,000$; and this includes the sensing units, controls, traffic counter, alarm, automatic turnstyles, and three sensitizing and desensitizing units. The cost of the targets depends on the type desired. The targets are priced as follows $\mathrm{flate-type-} \mathrm{\$.08}, \mathrm{spine-typo-} \mathrm{\$.10} ,\mathrm{and} \mathrm{double-}$ adhesive periedical-type-\$.15. This sysem provides all the advantages of a full-protection system while being very reliable. As books are charged out, they are passed over a desensitizer which will permit the book to be removed and brought in without setting off the alarm. As the books are returned, they are passed over a sensitizor. The system is essentiaily a magnetic field detector. To eliminate unnecessary false alarms, magnetized items are to be desensitized on the book desensitizer. This prevents an item that is not a book from triggoring the alarm. The systen also has provisions for multiple-exit contrel from a central location. 2 See fig. 1.1

No systom will be foolpreof because there will always be people who will try to bypass it. An important factor, though, is that an automated detection system will save the library a considerable amount of money in the long run. More impertant is that a library's collectien will centain that many more books for the use of its patrons.

USE OF DETECTION SYSTEMS IN VARIOUS LIBRARIES
In addition to the workings of each security system, we investigeted various Bosten-area libraries and their security systems. We also corresponded with other U.S. libraries acress the country. At each of these libraries, our intention was to assess the varying security problems and to subsequently relate these difficulties to those of Tufts' Wessell Library. Hopefully, the experiences of these libraries can help Tufte' staff to attack their security problems more objectively and wisely.

Our first stop was library A. The building was rather old with many separate rooms and an abundance of windows with no screens which could be easily opened by patrons. Presently, Library A has the 3 M Tattie-Tape system and has met with great success relative to their previoun situation.

Library A has approximately 280,000 volumes. Prior to the installation of the 3 M system, the library was enduring a yearly

Figure 1.1
Screen Senser with Locking Gate
book loss of about 8%, some stolen, some misplaced. 37. Monetarily, this meant a $\$ 358,400$ annual loss (calculated at $\$ 16 / b 00 k=$ cost+ processing--the cost we will assume for all undergraduats libraries). Certainly, their former security system--six security guards--was proving rather ineffective. As one of the library personnel explained, there were several reasons for the large amount of loss via theft. Library A had two main exits and several "sub" exits. The abundance of exits definitely increased their vulnerability to theft. In addition, students had been often known to remove books through open windows (one reason newer libraries, including Tufts, have air-conditioning and sealed picture windows), Library A's guards were sufficiently negligent to be considered ineffective to combat book theft. In fact, one had been known to doze off sporadically.

In general, then, the operation of Library A was in jeopardy. Its important service to the community was threatened by the Fery population it was attempting to serve. Too many people could not find the volumes they needed.

And, so, afier consideration of several automatic security systems, the 3 M Tattle-Tape device was chosen and installed. At present, only about 16% of the entire collection (ar and 45,000 volumes) are protected (at $\$.16 / \mathrm{book}=\$ 7200$): and th. mall amount of protection has resulted in an approximate 50% reduction in loss (determined by a sampling of high circulation books-about 2% of the collection). 3

In any case, the estimated drop from 8% to 4% is sufficient to justify the $3 M$ cost, even though the guards have been retained. Costs look something like this:

Of course, this does not include the initial \$7200 tagging fues yet either way, these costs surely are justiriadle in the light of a $\$ 179,200$ savings in boúks and more volumes on the shelves. Once purchase is complete, tine yearly cost will also be further reduced.

The people at Iibrary A have been pleased with the results of Tattle-Tape. There have been no public relations difficulties; in fact, the siricter attitude has motivated an increased respect for the services the library offers. False alarms have been a problem (the nearby subway system has caused some interference). Although the system is not foolproof, for the run-of-the-mill student crook, it is an effective theft-prevention device.

Library B is a medical,dental library and has had the 3M system for two and a half years. Their problem was mammoth nearly beyond comprehension. They had a 23\% yearly loss of their 60,000 volumes at an estimated $\$ 525,00$ per year (approximately $\$ 30 /$ book since almost all are scientific texts?. Most of the stolen books included new texts and bound journals. Bound journals are difficult to replace, thus incurring an other-than-monetary expense to Library B. Apparently, most theft was caused by studenis, though the very urban setting of this library could indicate outside theft.

In any case, the justification for installation of a 3M system seems clear. Library B bought the system. They randomly protected about 50% of their collection (30,000 books at $\$.16 /$ strip=\$4800), and personnel at the circulation desk monitor the system at the one exit. Thus, the initial cost was approximately $\$ 25,000$, and their yearly additional cost for protection of 4500 new yearly acquisitions is $\$ 720$.

After two and one half years, Library B has cut its loss of new books from 23% to $5 \% .43$ Extending this statistic to the general collection, we can expect that loss has been cut to less than 5% since new volumes (along wisth bound journals) are perhaps the "hottest" items of the collection. This decreased the lost book fee from $\$ 525,000 /$ year to around $\$ 90,000 /$ year-certainly much better, but by no means a trivial expense.

Our next visit was to a saall college in a rather quiet, rural area. The statistics we collected from the head librarian were somewhat sketchy since the staff had not yet completed an up-to-date inventory. However, since the general feeling had been that a large percentage of their 60,000 volumes were missing, Library C's administration decided to purchase an automated device for their one exit (which had always been unguaided). After lengthy investigation, they decided to purchase the early model Checkpoint system at a $\$ 4600$ cost. Due to the business and management emphasis of their curriculum, Library C's staff tagged all social science volumes and approximately 45% of the remainder of the collection. They tag all new acquisitions (4500 books/year at $\$.165$ per tag= $\$ 745$ /year). In addition, many books have dumby tags in them.

Library C has had their Checkpoint system for one and one half years. They have not, as yet, completed statistics showing changes in loss, but they feel confident that the loss has been reduced and that the initial and yearly costs have been worth monetary and service savings. Many fewer people are complaining about missing books. Although the system is not foolproof, as has been pointediout, it is an effective deterrent to theft. The majority of users will not go to the bother of attempting to outwit the system.

Library D_{1} situated in an urban setting, also recently installed a Oheckpoint system to protect their 150,000 volumes. Their yearly book loss had been estimated at $.6 \%-$ or a yearly loss of $\$ 14,400$. The claim is that theft has been cut to virtually 0%. This claim is questionable, since though all new acquisitons are tagged, only a small percentage of older books have yet been protected. The librarian we interviewed expressed his belief that most students do not know which books are tagged. This ignorance, he felt, has helped the system to be effective until now.

Library E is in the process of installing the Remington Rand Book-Mark System. A staff member informed us that though it is difficuit to assess the percentage of the 70,000 volumes which are lost or missing, the noticeable increase in complaints concerning missing books warrants the installation of the device,

This brings us to a question of philosophy. At Library E the monetary loss was not determined exactly. The staff feels that each volume has more than monetary value attched to it. If an important, quickly-circulating book is missing, the services the library offers become limited. To many a librarian, then,
their best service to the public is worth the hirhest costs of machinery and manpower.

At $I, 1$ hrary $E, 30,000$ of the volumes will he sensitifer. Library $E 1$ is the only New Fnoland 11 hrary that, has purchaser such a system. ife did contact, non-local lishraries and rocelter some information from a small California college which recentiv installed \quad Boo'r-Nar'r sustem. Thev claim that after installatinn of the sustem, boolr loss was reducer 75.7%. Their first venr savings approached $\$ 14,500.77$

Besides investiontine antomatic svistems, we felt it would be heneficial to look into various "manual" security systems. Lihrary F came to mind immeriatelv. I ihrarv fis security has an eventful history attached te it which we were ahle to learn about. In the early $1900^{\prime} s$. I inrary F had staclrs closer to all: stucents and public alike. If geristerer stixert wanted a book, he had to request a stack emplovep to locate it and hand it over. There were no exit guaris and no one hut. students refistered ir the University could check out hoo'rs. Apparently, one aentieman develoner an elahorate means hy which he was able to steal over 1500 hooks. He was iiscoverpe when a prospective buyer of a used book, noticed the Lihrary f stamp on the volume. The "rooue" was apprehended, and I ihrarv F beren their very strict rumr system which remains to this dav. The stacks are now open to enrolled students onlv. Tinrarv F. then, is theoreticallv an open stack (not to the purilic)
 out of the one exit. Traffic patterns and the lavout of the building allow this system to work well. Iibrary has 3,000,000 volumes and adds approximatelv 50,000 acquisitions vearlv. One librarian indicated to us that an inventory is considerer next to impossible. Thus, there are no available book-loss statisticsi yet the 11 hrarian was confident that the loss factor 1 s mirimal and that present security measures are effective. Unter consideration, presently, is the proposal to halt all circulation outside of the lihrary so that all hooks will be availahle nearlv full time.

In correspondence with the business manager of IIhrary \mathcal{G}. one of the pioneer users of the 3 M s.stem, we have learned that their security problems (loss of $\$ 30,000-\$ 50,000$ per vear) led them to install their ovstem. Thoush there are false alarms, Library G has found the systam to he a beneficial aid to gervine their students and have saved on manpower. (See Fizure 2.1)

The Levittown Piblic Iihrary has issued an extensive raport on 11 brary security. Their samplings indicated that with 100% protection, the 3 M system can eilminate up to 81% of the book loss: 50% coveraze showen m 78\% loss reduction: 25% coverage indicated between $50-75 \%$ renuction: 10% coverame resulter in a 50.6 reduction. This last statistic 18 one which samples hooks which were randomly tamere. When there was 10\% corerame of books selected by the staffi, the loss reduction reacher 60\%. The Levittown report also indicater that loss of unsensitizeत hooks within the 3 M system was also down approximately 50?. 47

Random or staff-selecter taminp can be controversin?. Levittown I ibrary conducter time studies which indicater that. uith rattle-Tape the former methor cost $\$ 0.032$ per item in mannower;

Library	System	Yearly Book Loss		\#Volumes	Monetary Loss Before: After		Cost Extra Sec. Employees Before Arter		Exits
		Beiore	After						
A	3M	8\%	4\%	280,000	\$358,000	\$179,000	\$21,626	\$21;626	2
B	3M	23\%	5\%	. 60.000	\$525,000	\$ 90,000		0	1
C	Checkpoint Mark I		Cut	60,000			0	0	1
D	Checkpoint Mark I	.6\%	0\%	150,000	\$14,400	\$ 0	0	0	1
E	Remington Rand Book-Mark			70,000			0	0	1
F	Manual Guards	10w	Iow	3,000,000	Negligible		\$30,000	\$30,000	1
G	3M	$\begin{aligned} & 2500 \\ & \text { books } \end{aligned}$			\$ 40,000	Cut			
Fig. 2.1									

the selected tafrins cost $\$.092$ per item. 47 These charses will be in adiition to the $\$.15$ cost for each strip. Unfortunately, the Levittown report focused on the $3: r$ s.ystem. However, the findings are likelv to follow in other situations. In genersl, then the report supdorted the widely-held notion that theft deterrent systems in lihraries are cost-effective and beneficial. This is the general feeline we also had after visitint the various libraries. In each case, hook loss has been reduced enourh to credit the systems as powerful adn effective. In adiition, the devices are becoming more and more popular. Before 1970, perhaps only one half dozen U.S. Ilbraries had automated devices. Since then the need has mown and so has marketins and purchasing of the systems.

WITHER WESSEIL?

Other colleae libraries have realized their security problems and found solutions to them. We have investipater the N1ls Yneve Wessell Library at Tufts University.

Periorically, members of the Wessell staff sample hooks to determine what is in the library and what 18 missing . For the past few years the fimure of $1.1 \% \mathrm{missin}$ hooks has been recorded annually. In the last count this figwe had incressed to 1.8满 This "missing" fleure includes books mis-shelveत as wel. as those stolen from the library. This 1.8% of 250,00 volumes Fone from the 11 brary collection means $\$ 72,000$ annual $108 s$. Nany of the books will not be retumen to the cullection: pither the "thief" will never return the hook, has himself lost or damaged $1 t$. or questionnaires sent to related acmemic departments will fo unanswered meaning faculty does not think the book 1 mportant enough to be reordered. Wessell is losing books, time, and money. A security prohlem exists.

There $1 s$ presentiy auard system at Wessell wherebv people file out of the 11 brary and show the cuard their material.

The suard makes sure books marked with the "Tufts University" stamp have been correctly checked out. Why should Wessell have a security problem, then? One reason 18 that the muaris are ineffective in stopping theft. In a small sample survey of Tufts students, it was found that some mimitted having taken books from the 11 brary without usine proper checkout proceriures. Many students said the muards do not check them and sometimes were asleep. Students often exit through the wronf तoor: and when more than one person exits, the zuard often checks the person closest to him while the other(s) pass iv. Women 's purses are seldom, if ever, searched. How many chances there are for someone to "steal" a bookil

Small survey of students at Wessell I 1 brary
Question 1: No you thinik security problem exists in Wessell I Lhrary?
No:16 Yesi8 No Answer:4
Question 2: Have you ever taken book from the library without properly checking it out?
No: 24 Yes: 4
Question 3: Would you be opposed to the installation of an automated security s.vstem?
No:23 Yes:5
How misht Wessell cut their book theft? One solution could be to strenphten the quard system. The problem is How to strensthen it. Library doors cannot be made to be one way due to Fire Repulations. A turnstyle could be set up at the exit to permit a check of singly-filed persons. But if the guard still does not search completely, the turnstyle will be worthless. Wessell hires retired men for guards at $\$ 2.35 / \mathrm{hr}, 120 \mathrm{hrs} / \mathrm{wk}=\$ 12000 / \mathrm{yr}$ for ineffective guards and a $72,000 / \forall r$, hook loss. Ther are no statistics to see if women checkers might be more effective. No one can just tell these puaris to be more conscious ahout book theft and expect a drop in book theft. Somethinp more has to be done, especially if theft continues to rise.

Humans cannot thoroughly do the job. Therefore, we looked into the aforementioned ilhrary security systems. At several lihraries we visited the security systems are set up at the circulation desk so that hooks are by-passed by the 11 brary staff as one easy step of the check out procedure. At Wessell, the circulation desk is set quite far from the door.

Circulation desk

Card
Catalopues

Stairs

There is almost no possibility of moving the circulation desk because of limited space. If a by-pass system were set up by the door, users would have to check out books at the circulation desk and have them rehandled and checked hy those guards.

What Wessell needs is a full-circulation system such as the Sperry Rand Book-Marls svstem. By tapring ahout 25% of all books, hook theft will he cut by 50%, no worry about moving the circulation desk as the books will not have to be by-passed at the main exit. The guaris, although not necessary for operation, can remain if onlv to be awakener by the system alarm.

CONCLUSION

Who wants yesterday's papers? Who wants to lose money If they don't have to? Why should many suffer the evils of a few?

One would think a $\$ 72000 / \mathrm{yr}$ rising loss to be significant. This is more evident when one realizes this means a 4,500 books gone/year, and closer to home, over 12 books/ day missing. Doesn't this mean something to someone? Doesn't this inconvenience more than one user? And therels no end in sight to the rising book loss. College is becomink more competitive. It is getting more important to have "that book."

The Sperry Rand Book-Mark system will hopefully stop "that book" from leaving the library hy $11 l e c a l$ means. The "book" will remain as part of the collection.

For a $\$ 20000$ initial set cost for the Sperry Rand system, plus $\$ 6250$ (not includine labor) to install targets in 62,500 volumes (25% of the 250000 volume collection). letting the guards retire gracefully(saving $\$ 12,000$). Wessell will save in the first year: \$72,000/2(minimun loss-cut) plus $\$ 12000$ (cuard savings), minus the costs of the system, $\$ 20000$ plus 35250. This is a $\$ 2,250$ savings to Wessell in the first year alone. Money talks.

It seems pretty ohvious to us that the Wessell lihrary should seriousiy consider the Sperry Rand system as an alternative to the quard-and-hook-loss. system presently in use.

ACKNOWLEDGEMENTS

```
These people all helped us in their own way:
    E.Willer
    J. Komidar
    G. Beal
    w. Rouse
    W. Hicks
    K. Tye
    M. McCloud
    D. Harkavy
    F. Cannon
    C. Rosen
    E. Levitt
    F. Jones
    M. Boudreau
and Dave Dobson
```

	$\begin{gathered} \text { INITIAL } \\ \operatorname{CoST}_{1} \end{gathered}$	$\begin{aligned} & \text { COST/ } \\ & \text { TARGET } \end{aligned}$	target INPUT $_{4}$	RESUITS
Checkpoint Mark I	\$4,600	. 165	\$10,312. 50	cannot be easilv implementer iue to the locetion of circulation तesk
```Checkpoint Mark II (full- clre)```	\$4,800	$\begin{aligned} & .11 \\ & .005_{2} \end{aligned}$	\$7,187. 50	```very clumsy as full-circ model,removable tabs```
$\begin{aligned} & 3-\mathrm{m} \\ & \text { Tattle- } \end{aligned}$ tape	\$17,500	. 16	\$10,000	cannot be easily 1 mplemented due to the location of circ resk
Sperry   Rand   Book-mark	-20,000	.$^{10} 3$	\$ $\$ 250$	```best all-arounत system for Wessell w/$21,750 first-year savinks```

1) Sensing hariware
2) Additional cost for desensitizino labels
3) Spine-type targets most efficient
4) Costs based on tarping all reserves, highest circulater books, and all new acquisitions( $25 \%$ of all volumes)
$11 \frac{\text { Checkpoint }}{\text { Checkpoint }} \frac{\text { Mark }}{\text { Systems, }}$ II "No Headache" Library Security System.
(2) Proilemi Book Theft, Solution: Book-Mark, Library Bureau Division of Sperry Rand, New York.

37 Willer. "Library Security Meport". 1973.

47 Sheridan, Robert and Martin, P.W. Results of Tests Conducted to Determine the Need for a Book Theft Deterrent Device and the Ability of the Tattle-Tape Electronic Book Detection System to Reduce Theft. Levittown, Niew York, November, 1972.

57 "Book Bugging: Possible Answers to Library Theft." Science. January 23, 1970..

67 Schefrin, Rita. "The Barriers to and Barriers of Library Security." Wilson Library Bulletin. H.W. Wilson Co.. New York, May, 1971, pp.870-877.
$\$ 7$ Library Annual heport, Californie, 1972.


[^0]:    *The modeled distribution function for Tufts qave a standard error of one, and mean difference from data of one tenth out of a hundred.

